This course includes materials on AI programming, logic, search, game playing, machine …
This course includes materials on AI programming, logic, search, game playing, machine learning, natural language understanding, and robotics, which will introduce the student to AI methods, tools, and techniques, their application to computational problems, and their contribution to understanding intelligence. The material is introductory; the readings cite many resources outside those assigned in this course, and students are encouraged to explore these resources to pursue topics of interest. Upon successful completion of this course, the student will be able to: Describe the major applications, topics, and research areas of artificial intelligence (AI), including search, machine learning, knowledge representation and inference, natural language processing, vision, and robotics; Apply basic techniques of AI in computational solutions to problems; Discuss the role of AI research areas in growing the understanding of human intelligence; Identify the boundaries of the capabilities of current AI systems. (Computer Science 405)
Students learn more about assistive devices, specifically biomedical engineering applied to computer …
Students learn more about assistive devices, specifically biomedical engineering applied to computer engineering concepts, with an engineering challenge to create an automatic floor cleaner computer program. Following the steps of the design process, they design computer programs and test them by programming a simulated robot vacuum cleaner (a LEGO® robot) to move in designated patterns. Successful programs meet all the design requirements.
This interdisciplinary course provides a hands-on approach to students in the topics …
This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon.
This is a great STEAM project from Instructables where the student will …
This is a great STEAM project from Instructables where the student will create a basic robotic hand from basic materials. I use this project to get the students to think of proper use of some tools, develop problem solving skills and prepare for their next build of a hydraulic arm.
Designed with inclusivity, cultural relevance, social justice and regional curriculum in mind, …
Designed with inclusivity, cultural relevance, social justice and regional curriculum in mind, these coding & robotics programs are offered free to K-12 classrooms across subject areas.
This course examines computers anthropologically, as artifacts revealing the social orders and …
This course examines computers anthropologically, as artifacts revealing the social orders and cultural practices that create them. Students read classic texts in computer science along with cultural analyses of computing history and contemporary configurations. It explores the history of automata, automation and capitalist manufacturing; cybernetics and WWII operations research; artificial intelligence and gendered subjectivity; robots, cyborgs, and artificial life; creation and commoditization of the personal computer; the growth of the Internet as a military, academic, and commercial project; hackers and gamers; technobodies and virtual sociality. Emphasis is placed on how ideas about gender and other social differences shape labor practices, models of cognition, hacking culture, and social media.
" Welcome to 2.007! This course is a first subject in engineering …
" Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E."
Student teams create laparoscopic surgical robots designed to reduce the invasiveness of …
Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, which must fit through small incisions, inspect the organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. Note: This activity is the core design project for a semester-long, three-credit high school engineering course. Refer to the associated curricular unit for preparatory lessons and activities.
Students discover the mathematical constant phi, the golden ratio, through hands-on activities. …
Students discover the mathematical constant phi, the golden ratio, through hands-on activities. They measure dimensions of "natural objects"—a star, a nautilus shell and human hand bones—and calculate ratios of the measured values, which are close to phi. Then students learn a basic definition of a mathematical sequence, specifically the Fibonacci sequence. By taking ratios of successive terms of the sequence, they find numbers close to phi. They solve a squares puzzle that creates an approximate Fibonacci spiral. Finally, the instructor demonstrates the rule of the Fibonacci sequence via a LEGO® MINDSTORMS® NXT robot equipped with a pen. The robot (already created as part of the companion activity, The Fibonacci Sequence & Robots) draws a Fibonacci spiral that is similar to the nautilus shape.
Students develop and solidify their understanding of the concept of "perimeter" as …
Students develop and solidify their understanding of the concept of "perimeter" as they engage in a portion of the civil engineering task of land surveying. Specifically, they measure and calculate the perimeter of a fenced in area of "farmland," and see that this length is equivalent to the minimum required length of a fence to enclose it. Doing this for variously shaped areas confirms that the perimeter is the minimal length of fence required to enclose those shapes. Then students use the technology of a LEGO MINDSTORMS(TM) NXT robot to automate this task. After measuring the perimeter (and thus required fence length) of the "farmland," students see the NXT robot travel around this length, just as a surveyor might travel around an area during the course of surveying land or measuring for fence materials. While practicing their problem solving and measurement skills, students learn and reinforce their scientific and geometric vocabulary.
Using the LEGO® NXT robotics kit, students construct and program robots to …
Using the LEGO® NXT robotics kit, students construct and program robots to illustrate and explore the Fibonacci sequence. Within teams, students are assigned roles: group leader, chassis builder, arm builder, chief programmer, and Fibonacci verifier. By designing a robot that moves based on the Fibonacci sequence of numbers, they can better visualize how quickly the numbers in the sequence grow. To program the robot to move according to these numbers, students break down the sequence into simple algebraic equations so that the computer can understand the Fibonacci sequence.
Students further their understanding of the engineering design process while combining mechanical …
Students further their understanding of the engineering design process while combining mechanical engineering and bioengineering to create an automated medical device. During the activity, students are given a fictional client statement and are required to follow the steps of the design process to create medical devices that help reduce the workload for hospital workers and increase the quality of patient care.
Lego Robotics uses Legos as a fun tool to explore robotics, mechanical …
Lego Robotics uses Legos as a fun tool to explore robotics, mechanical systems, electronics, and programming. This seminar is primarily a lab experience which provides students with resources to design, build, and program functional robots constructed from Legos and a few other parts such as motors and sensors.
Hands-on, project based learning for Grades 4 to 8. Students use design …
Hands-on, project based learning for Grades 4 to 8. Students use design thinking processes to solve engineering challenges. These space engineering themed lessons will engage students as they apply creative problem-solving skills. Resource includes a full downloadable guidebook. The guidebook includes a description of the design process, 5 design challenges, student handouts, and rubrics. It also includes links to other valuable resources and connection to standards (i.e. Next Generation Science, National Standards).
The Mission to Mars curricular unit introduces students to Mars the Red …
The Mission to Mars curricular unit introduces students to Mars the Red Planet. Students discover why scientists are so interested in studying this mysterious planet. Many interesting facts about Mars are revealed, and the history of Martian exploration is reviewed. Students will learn about the development of robotics and how robots are beneficial to science, society and the exploration of space. Details on engineers' involvement in space exploration are presented. Furthermore, students will learn how orbits allow astronauts to move from planet to planet and what type of equipment is used by scientists and engineers to safely explore space. Lastly, the specific details on and human risks for a possible future manned mission to Mars (and back to Earth again!) are discussed.
MASLab (Mobile Autonomous System Laboratory) is a robotics contest. The contest takes …
MASLab (Mobile Autonomous System Laboratory) is a robotics contest. The contest takes place during MIT's Independent Activities Period and participants earn 6 units of P/F credit and 6 Engineering Design Points. Teams of three to four students have less than a month to build and program sophisticated robots which must explore an unknown playing field and perform a series of tasks. MASLab provides a significantly more difficult robotics problem than many other university-level robotics contests. Although students know the general size, shape, and color of the floors and walls, the students do not know the exact layout of the playing field. In addition, MASLab robots are completely autonomous, or in other words, the robots operate, calculate, and plan without human intervention. Finally, MASLab is one of the few robotics contests in the country to use a vision based robotics problem.
Students act as civil engineers developing safe railways as a way to …
Students act as civil engineers developing safe railways as a way to strengthen their understanding of parallel and intersecting lines. Using pieces of yarn to visually represent line segments, students lay down "train tracks" on a carpeted floor, and make guesses as to whether these segments are arranged in parallel or non-parallel fashion. Students then test their tracks by running two LEGO® MINDSTORMS® NXT robots to observe the consequences of their track designs, and make safety improvements. Robots on intersecting courses face imminent collision, while robots on parallel courses travel safely.
Students learn about the concept of pushing, as well as the relationship …
Students learn about the concept of pushing, as well as the relationship between force and mass. Students practice measurement skills using pan scales and rulers to make predictions about mass and distance. A LEGO MINDSTORMS(TM) NXT robot is used to test their hypotheses. By the end of the activity, students have a better understanding of robotics, mass and friction and the concept of predicting.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.