Search Results (918)

View
Selected filters:
  • Physics
AC / DC: What's the Difference?
Conditions of Use:
Remix and Share
Rating

There is more than one way to produce electricity. In the late ...

There is more than one way to produce electricity. In the late 1800s, Thomas Edison's direct current power plants prevailed. Shortly after, however, alternating current took hold. This animated essay from the American Experience: Edison's Miracle of Light website describes and illustrates the similarities and differences between these two forms of electricity.

Subject:
Physics
Material Type:
Activity/Lab
Date Added:
11/08/2018
AP Physics
Conditions of Use:
Remix and Share
Rating

Relevant material from MIT's introductory courses to support students as they study ...

Relevant material from MIT's introductory courses to support students as they study and educators as they teach the AP Physics curriculum.

Subject:
Education
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Belcher, John
Chakrabarty, Deepto
Dourmashkin, Peter
Feld, Michael
Fisher, Peter
Hudson, Eric
Joannopoulos, John
Katsavounidis, Erik
Knuteson, Bruce
Kowalski, Stanley
Lewin, Walter
Litster, J. David
Pritchard, David
Roland, Gunther
Scholberg, Kate
Sciolla, Gabriella
Shaw, Michael
Stephans, George
Surrow, Bernd
Date Added:
07/04/2008
AUTO-2440 - Hybrid Electric Vehicle Power Management
Rating

This three credit course offered at Macomb Community College discusses the practical ...

This three credit course offered at Macomb Community College discusses the practical application of hybrid electric vehicle (HEV) power management systems. Areas of study include computer controls of the internal combustion engine (ICE), battery types, HEV thermal management, motors, safety, and HEV/EV accessories. System types, service procedures, and diagnostic procedures are covered for Ford, General Motors, Honda, and Lexus/Toyota vehicles. Included educational materials for this course are homework, sample exams and quizzes, labs, lesson plans, pre-assessment, and syllabus. Solutions are not provided with any materials. If you're an instructor and would like complete exams, quizzes, or solutions, please contact theCAAT. This course is composed of six modules that can be used to supplement existing courses or taught together as a complete course. These modules are Intro to HEVs,Honda HEVs, Toyota HEVs,Ford HEVs, GM HEVs, and Fuel Cells

Subject:
Career and Technical Education
Education
Physics
Material Type:
Assessment
Full Course
Lecture Notes
Lesson Plan
Provider:
Center for Automotive Technology - Macomb
Provider Set:
Center for Advanced Automotive Technology
Author:
Macomb Community College
Date Added:
09/27/2012
Above-Ground Storage Tank Design Project
Conditions of Use:
Read the Fine Print
Rating

At this point in the unit, students have learned about Pascal's law, ...

At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Emily Sappington, Mila Taylor
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Accelerometer: Centripetal Acceleration
Conditions of Use:
Read the Fine Print
Rating

Students work as physicists to understand centripetal acceleration concepts. They also learn ...

Students work as physicists to understand centripetal acceleration concepts. They also learn about a good robot design and the accelerometer sensor. They also learn about the relationship between centripetal acceleration and centripetal force governed by the radius between the motor and accelerometer and the amount of mass at the end of the robot's arm. Students graph and analyze data collected from an accelerometer, and learn to design robots with proper weight distribution across the robot for their robotic arms. Upon using a data logging program, they view their own data collected during the activity. By activity end , students understand how a change in radius or mass can affect the data obtained from the accelerometer through the plots generated from the data logging program. More specifically, students learn about the accuracy and precision of the accelerometer measurements from numerous trials.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
AMPS GK-12 Program,
Carlo Yuvienco
Jennifer S. Haghpanah
Date Added:
09/18/2014
Acoustic Mirrors
Conditions of Use:
Read the Fine Print
Rating

Students play and record the “Mary Had a Little Lamb” song using ...

Students play and record the “Mary Had a Little Lamb” song using musical instruments and analyze the intensity of the sound using free audio editing and recording software. Then they use hollow Styrofoam half-spheres as acoustic mirrors (devices that reflect and focus sound), determine the radius of curvature of the mirror and calculate its focal length. Students place a microphone at the acoustic mirror focal point, re-record their songs, and compare the sound intensity on plot spectrums generated from their recordings both with and without the acoustic mirrors. A worksheet and KWL chart are provided.

Subject:
Mathematics
Geometry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Nick Breen
Partnerships for Research, Innovation and Multi-Scale Engineering (PRIME) RET, Georgia Tech
Steven C. Thedford
Date Added:
10/13/2017
Action-Reaction! Rocket
Conditions of Use:
Read the Fine Print
Rating

Students construct rockets from balloons propelled along a guide string. They use ...

Students construct rockets from balloons propelled along a guide string. They use this model to learn about Newton's three laws of motion, examining the effect of different forces on the motion of the rocket.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Ben Heavner
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
The Advantage of Machines
Conditions of Use:
Read the Fine Print
Rating

In this lesson, students learn about work as defined by physical science ...

In this lesson, students learn about work as defined by physical science and see that work is made easier through the use of simple machines. Already encountering simple machines everyday, students will be alerted to their widespread uses in everyday life. This lesson serves as the starting point for the Simple Machines Unit.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Michael Bendewald
TeachEngineering.org
Date Added:
09/18/2014
The Adventure of Physics - Vol. I: Fall, Flow, and Heat
Conditions of Use:
Remix and Share
Rating

This book is written for anybody who is curious about nature and ...

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and space move leads to many adventures. This volume presents the best of them in the domain of everyday life.

Carefully observing everyday motion allows us to deduce six essential statements: everyday motion is continuous, conserved, relative, reversible, mirror-invariant – and lazy. Yes, nature is indeed lazy: in every motion, it minimizes change. This text explores how these six results are deduced and how they fit with all those observations that seem to contradict them. In the structure of modern physics, shown in Figure 1, the results on everyday motion form the major part of the starting point at the bottom. The present volume is the first of a six-volume overview of physics. It resulted from a threefold aim I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Reading a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clarifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
11/09/2017
The Adventure of Physics - Vol. III: Light, Charges, and Brains
Conditions of Use:
Remix and Share
Rating

This book is written for anybody who is curious about nature and ...

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adven- tures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Special relativity is the exploration of the energy speed limit c. General relativity is the exploration of the force limit c4/4G. The text shows that in both domains, all equations follow from these two limit values. This simple, intuitive and unusual way of learning relativity should reward the curiosity of every reader – whether student or professional.

The present volume is the second of a six-volume overview of physics that arose from a threefold aim that I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
11/09/2017
The Adventure of Physics - Vol. II: Relativity
Conditions of Use:
Remix and Share
Rating

This book is written for anybody who is curious about nature and ...

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adventures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
11/09/2017
The Adventure of Physics - Vol. IV: The Quantum of Change
Conditions of Use:
Remix and Share
Rating

This book is written for anybody who is curious about nature and ...

This book is written for anybody who is curious about nature and motion. Have you ever asked: Why do people, animals, things, images and space move? The answer leads to many adventures; this volume presents those due to the discovery that there is a smallest change value in nature. This smallest change value, the quantum of action, leads to what is called quantum physics. In the structure of modern physics, quantum physics covers three points; this volume covers the introduction to the point in the lower right: the foundations of quantum theory.

The present introduction to quantum physics arose from a threefold aim I have pur- sued since 1990: to present the basics of motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
11/09/2017
The Adventure of Physics - Vol. VI: The Strand Model - A Speculation on Unification
Conditions of Use:
Remix and Share
Rating

This book is written for anybody who is intensely curious about nature ...

This book is written for anybody who is intensely curious about nature and motion. Have you ever asked: Why do people, animals, things, images and empty space move? The answer leads to many adventures, and this book presents one of the best of them: the search for a precise, unified and final description of all motion.

The wish to describe all motion is a large endeavour. Fortunately, this large endeavour can be structured in the simple diagram shown in Figure 1. The final and unified description of motion, the topic of this book, corresponds to the highest point in the diagram. Searching for this final and unified description is an old quest. In the following, I briefly summarize its history and then present an intriguing, though speculative solution to the riddle.

The search for the final, unified description of motion is a story of many surprises. For example, twentieth-century research has shown that there is a smallest distance in nature. Research has also shown that matter cannot be distinguished from empty space at those small distances. A last surprise dates from this century: particles and space are best described as made of strands, instead of little spheres or points. The present text explains how to reach these unexpected conclusions. In particular, quantum field theory, the standard model of particle physics, general relativity and cosmology are shown to follow from strands. The three gauge interactions, the three particle generations and the three dimensions of space turn out to be due to strands. In fact, all the open questions of twentieth-century physics about the foundations of motion, all the millennium issues, can be solved with the help of strands.

The strand model, as presented in this text, is an unexpected result from a threefold aim that I have pursued since 1990, in the five previous volumes of this series: to present the basics of motion in a way that is up to date, captivating and simple. In retrospect, the aim for maximum simplicity has been central in deducing this speculation. While the previous volumes introduced, in an entertaining way, the established parts of physics, this volume presents, in the same entertaining and playful way, a speculation about unification. Nothing in this volume is established knowledge – yet. The text is the original presentation of the topic.

The search for a final theory is one of the great adventures of life: it leads to the limits of thought. The search overthrows our thinking habits about nature. A change in thinking habits can produce fear, often hidden by anger. But by overcoming our fears we gain strength and serenity. Changing thinking habits thus requires courage, but it also produces intense and beautiful emotions. Enjoy them!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
11/09/2017
The Adventure of Physics - Vol. V: Motion Inside Matter - Pleasure, Technology, and Stars
Conditions of Use:
Remix and Share
Rating

This book is written for anybody who is curious about nature and ...

This book is written for anybody who is curious about nature and motion. Curiosity about how bodies, images and empty space move leads to many adventures. This volume presents the best adventures about the motion inside people, inside animals, and inside any other type of matter – from the largest stars to the smallest nuclei.

Motion inside bodies – dead or alive – is described by quantum theory. Quantum theory describes all motion with the quantum of action h, the smallest change observed in nature. Building on this basic idea, the text first shows how to describe life, death and pleasure. Then, the text explains the observations of chemistry, materials science, astrophysics and particle physics. In the structure of physics, these topics correspond to the three ‘quantum’ points in Figure 1. The story of motion inside living and non-living matter, from the coldest gases to the hottest stars, is told here in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one sur- prise that makes the reader think. Also numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
11/09/2017
Aerodynamics of Viscous Fluids, Fall 2003
Conditions of Use:
Remix and Share
Rating

Boundary layers as rational approximations to the solutions of exact equations of ...

Boundary layers as rational approximations to the solutions of exact equations of fluid motion. Physical parameters influencing laminar and turbulent aerodynamic flows and transition. Effects of compressibility, heat conduction, and frame rotation. Influence of boundary layers on outer potential flow and associated stall and drag mechanisms. Numerical solution techniques and exercises. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Merchant, Ali A.
Date Added:
01/01/2003
Aeronautics and Astronautics
Conditions of Use:
Remix and Share
Rating

These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental ...

These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental concepts and approaches of aerospace engineering, highlighted through lectures on aeronautics, astronautics, and design. MIT˘ď‹ď_s Aerospace and Aeronautics curriculum is divided into three parts: Aerospace information engineering, Aerospace systems engineering, and Aerospace vehicles engineering. Visitors to this site will find undergraduate and graduate courses to fit all three of these areas, from Exploring Sea, Space, & Earth: Fundamentals of Engineering Design to Bio-Inspired Structures

Subject:
Technology and Engineering
Mathematics
Chemistry
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
03/17/2011
Air Pressure
Conditions of Use:
Read the Fine Print
Rating

Air pressure is pushing on us all the time although we do ...

Air pressure is pushing on us all the time although we do not usually notice it. In this activity, students learn about the units of pressure and get a sense of just how much air pressure is pushing on them.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Alex Conner
Geoffrey Hill
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Ampere's Law
Conditions of Use:
Read the Fine Print
Rating

The lesson begins with a demonstration introducing students to the force between ...

The lesson begins with a demonstration introducing students to the force between two current carrying loops, comparing the attraction and repulsion between the loops to that between two magnets. After formal lecture on Ampere's law, students begin to use the concepts to calculate the magnetic field around a loop. This is applied to determine the magnetic field of a toroid, imagining a toroid as a looped solenoid.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Eric Appelt
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
Amusement Park Physis
Rating

This lengthy resource includes many activities from labs to design challenges that ...

This lengthy resource includes many activities from labs to design challenges that include:
roller coastersbumper carscarouselspendulum rides
There are many connections to science concepts and some to design and build challenges as well.

Subject:
Physics
Material Type:
Lesson
Lesson Plan
Reference Material
Provider:
NASA
Author:
Ann Schwartz
Carla B. Rosenberg
Carol Hodanbosi
Melissa J. B. Rogers
Ph.D. Carla B. Rosenberg
Samantha Beres
Date Added:
03/28/2018
Amusement Park Ride: Ups and Downs in Design
Conditions of Use:
Read the Fine Print
Rating

Students design, build and test model roller coasters using foam tubing. The ...

Students design, build and test model roller coasters using foam tubing. The design process integrates energy concepts as they test and evaluate designs that address the task as an engineer would. The goal is for students to understand the basics of engineering design associated with kinetic and potential energy to build an optimal roller coaster. The marble starts with potential energy that is converted to kinetic energy as it moves along the track. The diameter of the loops that the marble traverses without falling out depends on the kinetic energy obtained by the marble.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
C. Shade
Making the Connection,
Marthy Cyr
Date Added:
09/18/2014