Seminar on downtown in US cities from the late nineteenth century to …
Seminar on downtown in US cities from the late nineteenth century to the late twentieth. Emphasis on downtown as an idea, place, and cluster of interests, on the changing character of downtown, and on recent efforts to rebuild it. Subjects considered include subways, skyscrapers, highways, urban renewal, and retail centers. Focus on readings, discussions, and individual research projects. Meets with graduate subject 11.339, but assignments differ.
Seminar on a selected topic from Renaissance architecture. Requires original research and …
Seminar on a selected topic from Renaissance architecture. Requires original research and presentation of a report. The aim of this course is to highlight some technical aspects of the classical tradition in architecture that have so far received only sporadic attention. It is well known that quantification has always been an essential component of classical design: proportional systems in particular have been keenly investigated. But the actual technical tools whereby quantitative precision was conceived, represented, transmitted, and implemented in pre-modern architecture remain mostly unexplored. By showing that a dialectical relationship between architectural theory and data-processing technologies was as crucial in the past as it is today, this course hopes to promote a more historically aware understanding of the current computer-induced transformations in architectural design.
Ecologies of Construction examines the resource requirements for the making and maintenance …
Ecologies of Construction examines the resource requirements for the making and maintenance of the contemporary built environment. This course introduces the field of industrial ecology as a primary source of concepts and methods in the mapping of material and energy expenditures dedicated to construction activities.
Students learn how rooftop gardens help the environment and the lives of …
Students learn how rooftop gardens help the environment and the lives of people, especially in urban areas. They gain an understanding of how plants reduce the urban heat island effect, improve air quality, provide agriculture space, reduce energy consumption and increase the aesthetic quality of cities. This draws upon the science of heat transfer (conduction, convection, radiation, materials, color) and ecology (plants, shade, carbon dioxide, photosynthesis), and the engineering requirements for rooftop gardens. In the associated activity, students apply their scientific knowledge to model and measure the effects of green roofs.
This is a project to assist in the design, drawing, modeling and …
This is a project to assist in the design, drawing, modeling and hopefully constructing of a small Community ChildrenŰŞs Center near Guayaquil, Ecuador. For the last year, Nicki Lehrer, from MITŰŞs Aero/Astro Department, has been organizing efforts to build the project. The goal of the workshop is to provide her with a full fleshed out design for the community center so it can be built in the summer of 2007.
During Hurricane Sandy, as the storm surge incapacitated buildings all along the …
During Hurricane Sandy, as the storm surge incapacitated buildings all along the New York and New Jersey coasts, Seagate Seagate Rehabilitation & Nursing Center functioned precisely as planned. At the peak of the storm, floodwaters filled the parking area and reached the lobby door, but did not enter the building. Emergency power generators remained safe and supplied backup power for four days despite an area-wide power outage. The nursing home’s emergency plans for food and medical supplies enabled staff and patients to shelter in place despite limited transportation for incoming supplies. Seagate not only provided continuous care to its residents during and after Sandy, it also assisted local community members seeking food and shelter.
This course will focus on providing students with the tools needed to …
This course will focus on providing students with the tools needed to practice responsible architecture in a contemporary context. It will familiarize students with the materials currently used in responsible practice, as well as the material properties most relevant to assembly. The course will also introduce students to materials that are untested but hold promise for future usage. Finally, the course will challenge students to refine their understanding of responsible or sustainable design practice by looking at the evolution of those ideas within the field of architecture.
We all know that it takes energy to provide us with the …
We all know that it takes energy to provide us with the basics of shelter: heating, cooling, lighting, electricity, sanitation and cooking. To create energy-efficient housing that is practical for people to use every day requires combining many smaller systems that each perform a function well, and making smart decisions about the sources of power we use. Through five lessons on the topics of heat transfer, circuits, daylighting, electricity from renewable energy sources, and passive solar design, students learn about the science, math and engineering that go into designing energy-efficient components of smart housing that is environmentally friendly. Through numerous design/build/analyze activities, students create a solar water heater, swamp cooler, thermostat, model houses for testing, model greenhouse, and wind and water turbine prototypes. It is best if students are concurrently taking Algebra 1 in order to complete some of the worksheets.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines the wedge, wheel and axle, lever, inclined plane, screw, and pulley in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit.
Students build small-sized prototypes of mountain rescue litters rescue baskets for use …
Students build small-sized prototypes of mountain rescue litters rescue baskets for use in hard-to-get-to places, such as mountainous terrain to evacuate an injured person (modeled by a potato) from the backcountry. Groups design their litters within constraints: they must be stable, lightweight, low-cost, portable and quick to assemble. Students demonstrate their designs in a timed test during which they assemble the litter and transport the rescued person (potato) over a set distance.
Imagining themselves arriving at the Olympic gold medal soccer game in Beijing, …
Imagining themselves arriving at the Olympic gold medal soccer game in Beijing, students begin to think about how engineering is involved in sports. After a discussion of kinetic and potential energy, an associated hands-on activity gives students an opportunity to explore energy absorbing materials as they try to protect an egg from being crushed.
A general introduction to the diverse roles of microorganisms in natural and …
A general introduction to the diverse roles of microorganisms in natural and artificial environments. Topics include: cellular architecture, energetics, and growth; evolution and gene flow; population and community dynamics; air, water, and soil microbiology; biogeochemical cycling; and microorganisms in biodeterioration, bioremediation, and pest control.
Students explore material properties in hands-on and visually evident ways via the …
Students explore material properties in hands-on and visually evident ways via the Archimedes' principle. First, they design and conduct an experiment to calculate densities of various materials and present their findings to the class. Using this information, they identify an unknown material based on its density. Then, groups explore buoyant forces. They measure displacement needed for various materials to float on water and construct the equation for buoyancy. Using this equation, they calculate the numerical solution for a boat hull using given design parameters.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier, and which people have used to provide mechanical advantage for thousands of years. Students learn about the wedge, wheel and axle, lever, inclined plane, screw and pulley in the context of the construction of a pyramid, gaining insights into tools that have been used since ancient times and are still important today. Through numerous hands-on activities, students imagine themselves as ancient engineers building a pyramid. Student teams evaluate and select a construction site, design a pyramid, perform materials calculations, test a variety of cutting wedges on different materials, design a small-scale cart/lever transport system to convey building materials, experiment with the angle of inclination and pull force on an inclined plane, see how a pulley can change the direction of force, and learn the differences between fixed, movable and combined pulleys. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.
Uses scale models to design environments that orchestrate contrasting material properties and …
Uses scale models to design environments that orchestrate contrasting material properties and conventional constructional systems to create places that foster specific ways of inhabiting space. Demonstrates how architecture differs from other forms of design. Intended for students to test aptitude for architectural design and to experience an unfamiliar mode of thought. Conducted in a studio format, with lectures on architectural theory and history, and structured for students with no previous experience in design. Required of Course IV majors.
Students come to understand the basics of engineering associated with the use, …
Students come to understand the basics of engineering associated with the use, selection, and properties of fabrics. A wide variety of natural and synthetic fibers are used in our clothing, home furnishings and in our travel and sports equipment. The specific material chosen for each application depends on how closely the properties of the material match the design needs. This activity focuses on the different characteristics of fabrics and shows students how natural and synthetic fabrics differ from one another. Students weigh the advantages and disadvantages of fabrics when considering the appropriate fabric to be used.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.