In this activity, students examine the effects of hurricanes on sea surface …
In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.
Through four lessons and four hands-on associated activities, this unit provides a …
Through four lessons and four hands-on associated activities, this unit provides a way to teach the overarching concept of energy as it relates to both kinetic and potential energy. Within these topics, students are exposed to gravitational potential, spring potential, the Carnot engine, temperature scales and simple magnets. During the module, students apply these scientific concepts to solve the following engineering challenge: "The rising price of gasoline has many effects on the US economy and the environment. You have been contracted by an engineering firm to help design a physical energy storage system for a new hybrid vehicle for Nissan. How would you go about solving this problem? What information would you consider to be important to know? You will create a small prototype of your design idea and make a sales pitch to Nissan at the end of the unit." This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn. This module is written for a first-year algebra-based physics class, though it could easily be modified for conceptual physics.
This course covers the development of the fundamental equations of fluid mechanics …
This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations and geostrophic flows; and the influence of wind stress. Experimental projects conducted in ocean engineering laboratories illustrating concepts taught in class, including ship resistance and model testing, lift and drag forces on submerged bodies, and vehicle propulsion.
This lab exercise exposes students to a potentially new alternative energy source …
This lab exercise exposes students to a potentially new alternative energy source hydrogen gas. Student teams are given a hydrogen generator and an oxygen generator. They balance the chemical equation for the combustion of hydrogen gas in the presence of oxygen. Then they analyze what the equation really means. Two hypotheses are given, based on what one might predict upon analyzing the chemical equation. Once students have thought about the process, they are walked through the experiment and shown how to collect the gas in different ratios. By trial and error, students determine the ideal combustion ratio. For both volume of explosion and kick generated by explosion, they qualitatively record results on a 0-4 scale. Then, students evaluate their collected results to see if the hypotheses were correct and how their results match the theoretical equation. Students learn that while hydrogen will most commonly be used for fuel cells (no combustion situation), it has been used in rocket engines (for which a tremendous combustion occurs).
This lab exercise exposes students to a potentially new alternative energy source …
This lab exercise exposes students to a potentially new alternative energy source hydrogen gas. Student teams are given a hydrogen generator and an oxygen generator. They balance the chemical equation for the combustion of hydrogen gas in the presence of oxygen. Then they analyze what the equation really means. Two hypotheses are given, based on what one might predict upon analyzing the chemical equation. Once students have thought about the process, they are walked through the experiment and shown how to collect the gas in different ratios. By trial and error, students determine the ideal combustion ratio. For both volume of explosion and kick generated by explosion, they qualitatively record results on a 0-4 scale. Then, students evaluate their collected results to see if the hypotheses were correct and how their results match the theoretical equation. Students learn that while hydrogen will most commonly be used for fuel cells (no combustion situation), it has been used in rocket engines (for which a tremendous combustion occurs).
During this activity students build a plastic pipette rocket. The first concept …
During this activity students build a plastic pipette rocket. The first concept will to learn how igniting varying mixtures of hydrogen and oxygen will affect how far the rocket will fly. Second students will observe and manipulate variables to better understand the fundamental chemistry concepts: principles of combustion reactions, kinetics, stoichiometry, gas mixtures, rocketry, and different types of chemical reactions. Finally, students will assess their own understanding of these chemistry concepts by investigating how NASA scientists launch real rockets into space. One follow-up activity would be to investigate and collect data on a launching a heavier object at the school football field.
This video features research conducted at University of Colorado's Institute of Arctic …
This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.
This video tutorial will help you identify effective formative practices. In order …
This video tutorial will help you identify effective formative practices. In order to improve student outcomes, it is essential that educators understand what the formative assessment process is and the characteristics of effective formative assessment practices.
This visualization is a collection of maps, by continent, that project the …
This visualization is a collection of maps, by continent, that project the impact on coastlines of a 216-foot rise in sea level, which is assumed to be the result of melting all the land ice on Earth.
This collection of photos from the NASA Climate website features images of …
This collection of photos from the NASA Climate website features images of global change, such as floods, wildfires, and retreating glaciers. Not all images show change caused directly by climate change and energy use, and descriptive captions indicate causes for change in most of the images.
Students are introduced to the concept of inertia and its application to …
Students are introduced to the concept of inertia and its application to a world without the force of friction acting on moving objects. When an object is in motion, friction tends to be the force that acts on this object to slow it down and eventually come to a stop. By severely limiting friction through the use of the hover pucks, students learn that the energy of one moving puck is transferred directly to another puck at rest when they collide. Students learn the concept of the conservation of energy via a "collision," and will realize that with friction, energy is converted primarily to heat to slow and stop an object in motion. In the associated activity, "The Puck Stops Here," students will investigate the frictional force of an object when different materials are placed between the object and the ground. This understanding will be used to design a new hockey puck for the National Hockey League.
This visualization is a map showing the global Climate Demography Vulnerability Index …
This visualization is a map showing the global Climate Demography Vulnerability Index (CDVI) - areas of human population with the highest vulnerability to the impacts of climate change.
The main content objectives covered in this unit are the phenomena of …
The main content objectives covered in this unit are the phenomena of global warming, carbon cycle, ocean acidification, and its impact on plants, animals, and the marine ecosystem. The main purpose of this is to provide the reader with the basic knowledge base about these processes and understand the main players that are responsible for them. Fossil fuel pollution by human activities is contributing to the increase in the amount of CO2 in the atmosphere. Some of the CO2 is being absorbed by the oceans. This process increases the number of free hydrogen ions in the oceans, making the ocean water more acidic. This phenomenon is called ocean acidification. When oceans become acidic, they can negatively affect the plants, living organisms such as shell-forming organisms, and other marine life. The results of this process are devastating and this unit hopes to bring students’ attention to these dangers.
A simple three-part diagram from UNEP GRID Vital Water Graphics showing how …
A simple three-part diagram from UNEP GRID Vital Water Graphics showing how global warming could impact coastlines and populated areas of Bangladesh with a 1 and 1.5 meter sea level rise relative to the current coastline.
This is a five-activity module that explores the evidence for and impacts …
This is a five-activity module that explores the evidence for and impacts of melting glacial ice, with resources from major institutions and scientists who study glaciers -- primarily in Arctic areas. The suite of activities includes both glaciers and melting ice, as well as the impact of melt water downstream. Each activity follows the 5E model of Engagement, Exploration, Explanation, Elaboration, and Evaluation.
This lesson is comprised of three activities (three class periods). Students use …
This lesson is comprised of three activities (three class periods). Students use web-based animations to explore the impacts of ice melt and changes to sea level. Students are introduced to topographic maps by doing a hands-on activity to model the contours of an island. Then students examine the relationship between topography and sea level rise by mapping changing shorelines using a topographic map.
Students learn about material balances, a fundamental concept of chemical engineering. They …
Students learn about material balances, a fundamental concept of chemical engineering. They use stoichiometry to predict the mass of carbon dioxide that escapes after reacting measured quantities of sodium bicarbonate with dilute acetic acid. Students then produce the reactions of the chemicals in a small reactor made from a plastic water bottle and balloon.
This video is one of a seven, Climate Change: Lines of Evidence …
This video is one of a seven, Climate Change: Lines of Evidence series, produced by the the National Research Council. It outlines and explains what evidence currently exists in support of humans playing a role in contributing to the rise in atmospheric carbon dioxide levels.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.