Updating search results...

Search Resources

65 Results

View
Selected filters:
  • Genetics
Gene Machine: The Lac Operon
Unrestricted Use
CC BY
Rating
0.0 stars

Build a gene network! The lac operon is a set of genes which are responsible for the metabolism of lactose in some bacterial cells. Explore the effects of mutations within the lac operon by adding or removing genes from the DNA.

Subject:
Genetics
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Blanco, John
George Spiegelman
Jared Taylor
John Blanco
Kathy Perkins
Noah Podolefsky
Perkins, Kathy
PhET Interactive Simulations
Podolefsky, Noah
Speigelman, George
Taylor, Jared
Date Added:
05/01/2010
Gene Machine: The Lac Operon (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Build a gene network! The lac operon is a set of genes which are responsible for the metabolism of lactose in some bacterial cells. Explore the effects of mutations within the lac operon by adding or removing genes from the DNA.

Subject:
Genetics
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Blanco, John
Perkins, Kathy
Podolefsky, Noah
Speigelman, George
Taylor, Jared
Date Added:
05/01/2010
General Biology I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An integrated course stressing the principles of biology. Life processes are examined primarily at the molecular and cellular levels. Intended for students majoring in biology or for non-majors who wish to take advanced biology courses.

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Material Type:
Activity/Lab
Full Course
Lecture Notes
Syllabus
Provider:
UMass Boston
Provider Set:
UMass Boston OpenCourseWare
Author:
Ph.D.
Professor Brian White
Date Added:
11/09/2017
Genetic Neurobiology, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior, by functional analysis of mutations and molecular analysis of their genes. Concentrates on work with nematodes, fruit flies, mice, and humans.

Subject:
Biology
Genetics
Life Science
Psychology
Social Studies
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Littleton, Troy
Quinn, William
Date Added:
01/01/2005
Geneticist Pardis Sabeti
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video profile adapted from NOVA scienceNOW, learn about geneticist and rock musician Pardis Sabeti, whose innovative insights into natural selection demonstrated how beneficial mutations spread quickly through a population.

Subject:
Genetics
Life Science
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
Alfred P. Sloan Foundation
HHMI
National Science Foundation
Public Television Viewers
WGBH Educational Foundation
Date Added:
08/20/2008
Genetics Career Research Project
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a project that allows students to explore careers related to the topic of Genetics.  Students will research a career that interests them related to Genetics, create a presentation, then present to the class.

Subject:
Biology
Genetics
Material Type:
Activity/Lab
Formative Assessment
Homework/Assignment
Rubric/Scoring Guide
Author:
Luke Statz
Date Added:
04/13/2023
Genomic Medicine, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lecturers begin each lecture block with a scenario, in order to set the stage and engage the student by showing: why is this important to know? how will the information presented be brought to bear on medical practice? The final section presents the ethical, legal, and social issues surrounding genomic medicine. A vision of how genomic medicine relates to preventative care and public health is presented in a discussion forum with the students where the following questions are explored: what is your level of preparedness now? what challenges must be met by the healthcare industry to get to where it needs to be?

Subject:
Career and Technical Education
Genetics
Health Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kohane, Isaac
Date Added:
01/01/2004
Heredity
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This module is a complete set of lessons "How do the differences arise in DNA that leads to differences in characteristics. Teacher module overview video included. Focus on the origin of genetic variation and how it gives rise to diverse traits. Each exercise has guiding questions. Modules include worksheets, videos, the time needed for each section, links to other resources, assessment.

Subject:
Genetics
Life Science
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Learning Task
Author:
Teach Genetics
Date Added:
12/12/2018
Heredity Mix n Match
Read the Fine Print
Educational Use
Rating
0.0 stars

Students randomly select jelly beans (or other candy) that represent genes for several human traits such as tongue-rolling ability and eye color. Then, working in pairs (preferably of mixed gender), students randomly choose new pairs of jelly beans from those corresponding to their own genotypes. The new pairs are placed on toothpicks to represent the chromosomes of the couple's offspring. Finally, students compare genotypes and phenotypes of parents and offspring for all the "couples" in the class. In particular, they look to see if there are cases where parents and offspring share the exact same genotype and/or phenotype, and consider how the results would differ if they repeated the simulation using more than four traits.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Mary R. Hebrank
Date Added:
09/26/2008
High School Genetics & Heredity Unit - Phenomena Found in Agriculture
Unrestricted Use
CC BY
Rating
0.0 stars

How can we Design Cattle to Better Meet Human Needs?

In this high school Storyline unit on genetics and heredity, students are introduced to ‘SuperCows’. As they explore the vast variety of cattle breeds, students discover that cattle are specialized for different purposes and while similar, the ‘SuperCows’ are clearly unique. Students wonder what caused this diversity and specificity which leads to investigations about the role of inheritance, DNA and proteins.

Subject:
Agriculture, Food and Natural Resources
Biology
Career and Technical Education
Genetics
Life Science
Material Type:
Unit of Study
Date Added:
10/04/2020
Imaging DNA Structure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the latest imaging methods used to visualize molecular structures and the method of electrophoresis that is used to identify and compare genetic code (DNA). Students should already have basic knowledge of genetics, DNA (DNA structure, nucleotide bases), proteins and enzymes. The lesson begins with a discussion to motivate the need for imaging techniques and DNA analysis, which prepares students to participate in the associated two-part activity: 1) students each choose an imaging method to research (from a provided list of molecular imaging methods), 2) they research basic information about electrophoresis.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Mircea Ionescu
Myla Van Duyn
University of Houston,
Date Added:
09/18/2014
Inside the DNA
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct their own research to discover and understand the methods designed by engineers and used by scientists to analyze or validate the molecular structure of DNA, proteins and enzymes, as well as basic information about gel electrophoresis and DNA identification. In this computer-based activity, students investigate particular molecular imaging technologies, such as x-ray, atomic force microscopy, transmission electron microscopy, and create short PowerPoint presentations that address key points. The presentations include their own explanations of the difference between molecular imaging and gel electrophoresis.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Mircea Ionescu
Myla Van Duyn
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Introduction to Biological Engineering Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's materials are used in this Spring 2009 version, and are included with his permission. This OCW Web site is based on the OpenWetWare class Wiki, found at OpenWetWare: 20.020 (S09)"

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kuldell, Natalie
Date Added:
01/01/2009
Introduction to Evolutionary Computation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of evolution by natural selection and digital evolution software. They learn about the field of evolutionary computation, which applies the principles of natural selection to solve engineering design problems. They learn the similarities and differences between natural selection and the engineering design process.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Bio-Inspired Technology and Systems (BITS) RET,
Wendy Johnson
Date Added:
09/18/2014
Introduction to Genetic Engineering and Its Applications
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers apply their understanding of DNA to manipulate specific genes to produce desired traits, and how engineers have used this practice to address current problems facing humanity. They learn what genetic engineering means and examples of its applications, as well as moral and ethical problems related to its implementation. Students fill out a flow chart to list the methods to modify genes to create GMOs and example applications of bacteria, plant and animal GMOs.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Matthew Zelisko, Kimberly Anderson
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Kids with Intellectual and Developmental Disabilities
Rating
0.0 stars

61 million adult Americans live with some sort of physical, sensory, or intellectual disability. When parents receive the news—prenatally or postnatally—that their child may have some form of a chromosomal difference or intellectual disability, it’s key that healthcare providers relay this diagnosis in a way that’s respectful to the family and those who live with these disabilities every day.

Subject:
Education
Genetics
Health Education
Life Science
Social Studies
Special Education
Material Type:
Activity/Lab
Learning Task
Other
Author:
PBS
Date Added:
08/11/2023
Medical Terminology for Healthcare Professions
Unrestricted Use
CC BY
Rating
0.0 stars

Medical Terminology for Healthcare Professions is an Open Educational Resource (OER) that focuses on breaking down, pronouncing, and learning the meaning of medical terms within the context of anatomy and physiology. This resource is targeted for Healthcare Administration, Health Sciences, and Pre-Professional students.

Subject:
Anatomy/Physiology
Career and Technical Education
Education
Genetics
Health Education
Health Science
Life Science
Nutrition Education
Material Type:
Textbook
Author:
Andrea Nelson
Katherine Greene
Date Added:
12/14/2021
Mice Rule! (Or Not)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the relationships between genetics, biodiversity, and evolution through a simple activity involving hypothetical wild mouse populations. First, students toss coins to determine what traits a set of mouse parents possesses, such as fur color, body size, heat tolerance, and running speed. Next they use coin tossing to determine the traits a mouse pup born to these parents possesses. These physical features are then compared to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Engineering K-PhD Program,
Mary R. Hebrank (project and lesson/activity consultant)
Date Added:
09/18/2014
Molecular Biology and Genetics in Modern Medicine, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics."

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Giersch, Anne
Housman, David
Date Added:
01/01/2007