Search Resources

577 Results

View
Selected filters:
  • Engineering
Remix
ACP Less
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Students will use engineering skills to develop and use models as well as collaboratively plan an investigation to make sense of buoyancy.

Remix this template to upload your ACP lesson and unit plans into WISELearn.

Subject:
Oceanography
Education
Character Education
Environmental Science
Physics
Material Type:
Activity/Lab
Learning Task
Lesson
Lesson Plan
Other
Author:
Blake Jersey
Date Added:
01/16/2020
Abdominal Cavity and Laparoscopic Surgery
Read the Fine Print
Educational Use
Rating

For students interested in studying biomechanical engineering, especially in the field of surgery, this lesson serves as an anatomy and physiology primer of the abdominopelvic cavity. Students are introduced to the abdominopelvic cavity—a region of the body that is the focus of laparoscopic surgery—as well as the benefits and drawbacks of laparoscopic surgery. Understanding the abdominopelvic environment and laparoscopic surgery is critical for biomechanical engineers who design laparoscopic surgical tools.

Subject:
Technology and Engineering
Life Science
Anatomy/Physiology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry, Brandi N. Briggs, Stephanie Rivale, Denise W. Carlson
Integrated Teaching and Learning Program,
TeachEngineering.org
Date Added:
09/18/2014
About Accuracy and Approximation
Read the Fine Print
Educational Use
Rating

Students learn about the concepts of accuracy and approximation as they pertain to robotics, gain insight into experimental accuracy, and learn how and when to estimate values that they measure. Students also explore sources of error stemming from the robot setup and rounding numbers.

Subject:
Technology and Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS GK-12 Program,
Ronald Poveda
TeachEngineering.org
Date Added:
09/18/2014
Adaptations for Bird Flight – Inspiration for Aeronautical Engineering
Read the Fine Print
Educational Use
Rating

This activity first asks the students to study the patterns of bird flight and understand that four main forces affect the flight abilities of a bird. They will study the shape, feather structure, and resulting differences in the pattern of flight. They will then look at several articles that feature newly designed planes and the birds that they are modeled after. The final component of this activity is to watch the Nature documentary, "Raptor Force" which chronicles the flight patterns of birds, how researchers study these animals, and what interests our military and aeronautical engineers about these natural adaptations. This activity serves as an extension to the biomimetics lesson. Although students will not be using this information in the design process for their desert resort, it provides interesting information pertaining to the current use of biomimetics in the field of aviation. Students may extend their design process by using this information to create a means of transportation to and from the resort if they chose to.

Subject:
Technology and Engineering
Life Science
Biology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
The Advantage of Machines
Read the Fine Print
Educational Use
Rating

In this lesson, students learn about work as defined by physical science and see that work is made easier through the use of simple machines. Already encountering simple machines everyday, students will be alerted to their widespread uses in everyday life. This lesson serves as the starting point for the Simple Machines Unit.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Michael Bendewald
TeachEngineering.org
Date Added:
09/18/2014
Aeronautics and Astronautics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental concepts and approaches of aerospace engineering, highlighted through lectures on aeronautics, astronautics, and design. MIT˘ď‹ď_s Aerospace and Aeronautics curriculum is divided into three parts: Aerospace information engineering, Aerospace systems engineering, and Aerospace vehicles engineering. Visitors to this site will find undergraduate and graduate courses to fit all three of these areas, from Exploring Sea, Space, & Earth: Fundamentals of Engineering Design to Bio-Inspired Structures

Subject:
Technology and Engineering
Mathematics
Chemistry
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
03/17/2011
Aircraft Systems Engineering, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

16.885J offers an holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific shuttle systems for detailed analysis and develop new subsystem designs using state of the art technology.

Subject:
Technology and Engineering
Art and Design
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hoffman, Jeffrey
Date Added:
01/01/2005
All About Multiplication
Read the Fine Print
Rating

This unit consists of four lessons in which students explore several meanings and representations of multiplication, including number lines, sets, arrays, and balance beams. They also learn about the commutative property of multiplication, the results of multiplying by 1 and by 0, and the inverse property of multiplication. Students write story problems and create pictographs. The unit includes activity sheets, assessment ideas, links to related applets, reflective questions for students and teachers, extensions and a bibliography of children's literature with a multiplication focus.

Subject:
Mathematics
Algebra
Material Type:
Interactive
Lesson Plan
Provider:
National Council of Teachers of Mathematics
Provider Set:
Illuminations
Author:
Grace M. Burton
Date Added:
11/05/2000
Amusement Park Physis
Rating

This lengthy resource includes many activities from labs to design challenges that include:
roller coastersbumper carscarouselspendulum rides
There are many connections to science concepts and some to design and build challenges as well.

Subject:
Physics
Material Type:
Lesson
Lesson Plan
Reference Material
Provider:
NASA
Author:
Ann Schwartz
Carla B. Rosenberg
Carol Hodanbosi
Melissa J. B. Rogers
Ph.D. Carla B. Rosenberg
Samantha Beres
Date Added:
03/28/2018
Anchors Away
Read the Fine Print
Educational Use
Rating

In this activity, students discover the relationship between an object's mass and the amount of space it takes up (its volume). Students learn about the concept of displacement and how an object can float if it displaces enough water, and the concept of density and its relationship to mass and volume.

Subject:
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Adventure Engineering,
TeachEngineering.org
Date Added:
09/18/2014
Android App Development
Read the Fine Print
Educational Use
Rating

Students develop an app for an Android device that utilizes its built-in internal sensors, specifically the accelerometer. The goal of this activity is to teach programming design and skills using MIT's App Inventor software (free to download from the Internet) as the vehicle for learning. The activity should be exciting for students who are interested in applying what they learn to writing other applications for Android devices. Students learn the steps of the engineering design process as they identify the problem, develop solutions, select and implement a possible solution, test the solution and redesign, as needed, to accomplish the design requirements.

Subject:
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
IMPART RET Program, College of Information Science & Technology,
Scott Burns, Brian Sandall
TeachEngineering.org
Date Added:
09/18/2014
Antimatter Matters
Read the Fine Print
Educational Use
Rating

Antimatter, the charge reversed equivalent of matter, has captured the imaginations of science fiction fans for years as a perfectly efficient form of energy. While normal matter consists of atoms with negatively charged electrons orbiting positively charged nuclei, antimatter consists of positively charged positrons orbiting negatively charged anti-nuclei. When antimatter and matter meet, both substances are annihilated, creating massive amounts of energy. Instances in which antimatter is portrayed in science fiction stories (such as Star Trek) are examined, including their purposes (fuel source, weapons, alternate universes) and properties. Students compare and contrast matter and antimatter, learn how antimatter can be used as a form of energy, and consider potential engineering applications for antimatter.

Subject:
Technology and Engineering
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Rachel Howser
TeachEngineering.org
Date Added:
09/18/2014
Applications of Linear Functions
Read the Fine Print
Educational Use
Rating

This final lesson in the unit culminates with the Go Public phase of the legacy cycle. In the associated activities, students use linear models to depict Hooke's law as well as Ohm's law. To conclude the lesson, students apply they have learned throughout the unit to answer the grand challenge question in a writing assignment.

Subject:
Technology and Engineering
Mathematics
Algebra
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
TeachEngineering.org
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
Applied Nuclear Physics, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. Binding energy and nuclear stability. Interactions of charged particles, neutrons, and gamma rays with matter. Radioactive decays. Energetics and general cross-section behavior in nuclear reactions.

Subject:
Technology and Engineering
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Yip, Sidney
Date Added:
01/01/2006
Archimedes' Principle, Pascal's Law and Bernoulli's Principle
Read the Fine Print
Educational Use
Rating

Students are introduced to Pascal's law, Archimedes' principle and Bernoulli's principle. Fundamental definitions, equations, practice problems and engineering applications are supplied. A PowerPoint® presentation, practice problems and grading rubric are provided.

Subject:
Technology and Engineering
Mathematics
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
TeachEngineering.org
Date Added:
09/18/2014
Architects and Engineers
Read the Fine Print
Educational Use
Rating

Students explore the interface between architecture and engineering. In the associated hands-on activity, students act as both architects and engineers by designing and building a small parking garage.

Subject:
Technology and Engineering
Education
Art and Design
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Katherine Beggs
Melissa Straten
Sara Stemler
TeachEngineering.org
Date Added:
09/18/2014
Are All Stars Like The Sun?
Read the Fine Print
Rating

This is an activity about comparing images of the Sun in different wavelengths of light. Learners will examine solar images taken by the SOHO spacecraft to look for differences in the features that are visible in the various wavelengths of light. This activity requires access to the internet to view or print images of the Sun. This is Activity 7 of the Sun As a Star afterschool curriculum.

Subject:
Technology and Engineering
Mathematics
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Full Course
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/13/2017
Art in Engineering - Moving Art
Read the Fine Print
Educational Use
Rating

Students learn how forces are used in the creation of art. They come to understand that it is not just bridge and airplane designers who are concerned about how forces interact with objects, but artists as well. As "paper engineers," students create their own mobiles and pop-up books, and identify and use the forces (air currents, gravity, hand movement) acting upon them.

Subject:
Technology and Engineering
Art and Design
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Natalie Mach
TeachEngineering.org
Date Added:
09/18/2014
The Art of Approximation in Science and Engineering: How to Whip Out Answers Quickly
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Subject:
Technology and Engineering
Algebra
Numbers and Operations
Physics
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Stephen M. Hou
Date Added:
10/10/2017