Updating search results...

Search Resources

1843 Results

View
Selected filters:
  • Technology and Engineering
Astronautical Engineer
Rating
0.0 stars

Join Danny Rubin, founder of Rubin, and Eric Ingram, CEO of Scout, for an in-depth look at the future of space travel and issues of accessibility. This conversation covers inclusiveness, technology, space and more! Students and teachers should also make use of the webinar worksheet at https://rubineducation.com/wp-content/uploads/2022/01/Rubin-Live-Webinar-Certificate-Explore-the-World-of-Space-Travel-January-12-2022.pdf

Subject:
Career and Technical Education
Earth and Space Science
Technology and Engineering
Material Type:
Other
Author:
Danny Rubin
Date Added:
01/02/2023
Atomistic Computer Modeling of Materials (SMA 5107), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure approaches, molecular dynamics, and Monte Carlo.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ceder, Gerbrand
Marzari, Nicola
Date Added:
01/01/2005
Attack of the Raging River
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, the students will discover the relationship between an object's mass and the amount of space it takes up (its volume). The students will also learn about the concepts of displacement and density.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Adventure Engineering,
Date Added:
09/18/2014
At the Doctor's
Read the Fine Print
Educational Use
Rating
0.0 stars

In this simulation of a doctor's office, students play the roles of physician, nurse, patients, and time-keeper, with the objective to improve the patient waiting time. They collect and graph data as part of their analysis. This serves as a hands-on example of using engineering principles and engineering design approaches (such as models and simulations) to research, analyze, test and improve processes.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Courtney Feliciani (under the advisement of Patricio Rocha, Dayna Martinez and Tapas K. Das)
STARS GK-12 Program,
Date Added:
09/18/2014
Audio Engineers: Sound Weavers
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to audio engineers. They discover in what type of an environment audio engineers work and exactly what they do on a day-to-day basis. Students come to realize that audio engineers help produce their favorite music and movies.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
TeachEngineering.org
Date Added:
09/18/2014
Automatic Floor Cleaner Computer Program Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn more about assistive devices, specifically biomedical engineering applied to computer engineering concepts, with an engineering challenge to create an automatic floor cleaner computer program. Following the steps of the design process, they design computer programs and test them by programming a simulated robot vacuum cleaner (a LEGO® robot) to move in designated patterns. Successful programs meet all the design requirements.

Subject:
Career and Technical Education
Health Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering,
Jared R. Quinn
Kristen Billiar
Terri Camesano
Date Added:
09/18/2014
BEAR'S Tank (A Student Version of SHARK Tank)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After an introduction to the hit show "Shark Tank," students will identify an area of improvement for a product and attempt to sell their idea and/or prototype to potential (mock) buyers in the "Bear's Tank."

Subject:
Art and Design
Career and Technical Education
Information and Technology Literacy
Marketing, Management and Entrepreneurship
Media Arts
Technology and Engineering
Material Type:
Lesson Plan
Author:
Lynn Aprill
Date Added:
12/20/2017
Backyard Weather Station
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use their senses to describe what the weather is doing and predict what it might do next. After gaining a basic understanding of weather patterns, students act as state park engineers and design/build "backyard weather stations" to gather data to make actual weather forecasts.

Subject:
Atmospheric Science
Career and Technical Education
Earth and Space Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Bacteria Are Everywhere!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of engineering biological organisms and studying their growth to be able to identify periods of fast and slow growth. They learn that bacteria are found everywhere, including on the surfaces of our hands. Student groups study three different conditions under which bacteria are found and compare the growth of the individual bacteria from each source. In addition to monitoring the quantity of bacteria from differ conditions, they record the growth of bacteria over time, which is an excellent tool to study binary fission and the reproduction of unicellular organisms.

Subject:
Biology
Career and Technical Education
Chemistry
Life Science
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS GK-12 Program,
Janet Yowell
Jasmin Hume
TeachEngineering.org
Date Added:
09/18/2014
Bacteria Transformation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Matthew Zelisko, Kimberly Anderson
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
The Balancing Act
Read the Fine Print
Educational Use
Rating
0.0 stars

Students visualize and interact with concepts already learned, specifically algebraic equations and solving for unknown variables. They construct a balancing seesaw system (LEGO® Balance Scale) made from LEGO MINDSTORMS® parts and digital components to mimic a balancing scale. They are given example algebraic equation problems to analyze, configure onto the balance scale, and evaluate by manipulating LEGO pieces and gram masses that represent terms of an equation such as unknown variables, coefficients and integers. Digital light sensors, built into the LEGO Balance Scale, detect any balance or imbalances displayed on the balancing scale. The LEGO Balance Scale interactively issues a digital indication of balance or imbalance within the system. If unbalanced, students continue using the LEGO Balance Scale until they are confident in their understanding of solving algebraic equations. The goal is for students to become confident in solving algebraic equations by fundamentally understanding the basics of algebra and real-world algebraic applications.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS GK-12 Program,
Gisselle Cunningham, Russell Holstein, Linderick Outerbridge, Jared Soto, Timothy Li
TeachEngineering.org
Date Added:
09/18/2014
Ball Bounce Experiment
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate different balls' abilities to bounce and represent the data they collect graphically.

Subject:
Career and Technical Education
Chemistry
Education
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Teaching/Learning Strategy
Provider:
TeachEngineering
Author:
Center for Engineering Educational Outreach,
Center for Engineering Educational Outreach, Tufts University
TeachEngineering.org
Tufts University
Date Added:
09/18/2014
Balloons
Read the Fine Print
Educational Use
Rating
0.0 stars

Students follow the steps of the engineering design process as they design and construct balloons for aerial surveillance. After their first attempts to create balloons, they are given the associated Estimating Buoyancy lesson to learn about volume, buoyancy and density to help them iterate more successful balloon designs.Applying their newfound knowledge, the young engineers build and test balloons that fly carrying small flip cameras that capture aerial images of their school. Students use the aerial footage to draw maps and estimate areas.

Subject:
Career and Technical Education
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Integrated Teaching and Learning Program,
Marissa H. Forbes
Mike Soltys
TeachEngineering.org
Date Added:
09/18/2014
Balsa Glider Competition
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this activity is to bring together the students' knowledge of engineering and airplanes and the creation of a glider model to determine how each modification affects the flight. The students will use a design procedure whereby one variable is changed and all the others are kept constant.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Alex Conner
Geoffrey Hill
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Balsa Towers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students groups use balsa wood and glue to build their own towers using some of the techniques they learned from the associated lesson. While general guidelines are provided, give students freedom with their designs and encourage them to implement what they have learned about structural engineering. The winning team design is the tower with the highest strength-to-weight ratio.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Kelly Devereaux, Benjamin Burnham
Techtronics Program,
Date Added:
09/18/2014
Basically Acidic Ink
Read the Fine Print
Educational Use
Rating
0.0 stars

Students hypothesize whether vinegar and ammonia-based glass cleaner are acids or bases. They create designs on index cards using these substances as invisible inks. After the index cards have dried, they apply red cabbage juice as an indicator to reveal the designs.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Corey Burton
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Nicole Stewart
Rachel Howser
TeachEngineering.org
Date Added:
09/18/2014
Basically Acids
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of acid/base chemistry in a fun, interactive way by studying instances of acid/base chemistry found in popular films such as Harry Potter and the Prisoner of Azkaban and National Treasure. Students learn what acids, bases and indicators are and how they can be used, including invisible ink. They also learn how engineers use acids and bases every day to better our quality of life. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
TeachEngineering.org
University of Houston,
Date Added:
09/18/2014
Basics of Fluid Mechanics
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Fluid mechanics deals with the study of all fluids under static and dynamic situations. Fluid mechanics is a branch of continuous mechanics which deals with a relationship between forces, motions, and statical conditions in a continuous material. This study area deals with many and diversified problems such as surface tension, fluid statics, flow in enclose bodies, or flow round bodies (solid or otherwise), flow stability, etc. In fact, almost any action a person is doing involves some kind of a fluid mechanics problem. Furthermore, the boundary between the solid mechanics and fluid mechanics is some kind of gray shed and not a sharp distinction (see Figure 1.1 for the complex relationships between the different branches which only part of it should be drawn in the same time.). For example, glass appears as a solid material, but a closer look reveals that the glass is a liquid with a large viscosity. A proof of the glass ``liquidity'' is the change of the glass thickness in high windows in European Churches after hundred years. The bottom part of the glass is thicker than the top part. Materials like sand (some call it quick sand) and grains should be treated as liquids. It is known that these materials have the ability to drown people. Even material such as aluminum just below the mushy zone also behaves as a liquid similarly to butter. Furthermore, material particles that "behaves'' as solid mixed with liquid creates a mixture After it was established that the boundaries of fluid mechanics aren't sharp, most of the discussion in this book is limited to simple and (mostly) Newtonian (sometimes power fluids) fluids which will be defined later.

This book describes the fundamentals fluid mechanics phenomena for engineers and others. It is designed to replace all introductory textbook(s) or instructor's notes for the fluid mechanics in undergraduate classes for engineering/science students but also for technical peoples. It is hoped that the book could be used as a reference book for people who have at least some basics knowledge of science areas such as calculus, physics, etc.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Textbook
Provider:
Potto Project
Author:
Genick Bar–MeirPh. D.
Date Added:
01/01/2011
Basics of Fluid Mechanics
Unrestricted Use
CC BY
Rating
0.0 stars

This book, Basics of Fluid Mechanics, describes the fundamentals of fluid mechanics phenomena for engineers and others. This book is designed to replace all introductory textbook(s) or instructor’s notes for the fluid mechanics in undergraduate classes for engineering/science students but also for technical peoples. It is hoped that the book could be used as a reference book for people who have at least some basics knowledge of science areas such as calculus, physics, etc.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Textbook
Provider:
BCcampus
Provider Set:
BCcampus Open Textbooks
Author:
Genick Bar-Meir
Date Added:
10/28/2014
Battle of the Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the properties of composites using inexpensive materials and processing techniques. They create beams using Laffy Taffy and water, and a choice of various reinforcements (pasta, rice, candies) and fabricating temperatures. Student groups compete for the highest strength beam. They measure flexure strength with three-point bend tests and calculations. Results are compared and discussed to learn how different materials and reinforcement shapes affect material properties and performance.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Marc Bird
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014