In this interactive activity from the Building Big Web site, use your …
In this interactive activity from the Building Big Web site, use your knowledge of bridge design to match the right bridge to the right location in a fictitious city.
Students explore how tension and compression forces act on three different bridge …
Students explore how tension and compression forces act on three different bridge types. Using sponges, cardboard and string, they create models of beam, arch and suspension bridges and apply forces to understand how they disperse or transfer these loads.
Students are presented with a brief history of bridges as they learn …
Students are presented with a brief history of bridges as they learn about the three main bridge types: beam, arch and suspension. They are introduced to two natural forces tension and compression common to all bridges and structures. Throughout history, and today, bridges are important for connecting people to resources, places and other people. Students become more aware of the variety and value of bridges around us in our everyday lives.
Students act as engineers to learn about the strengths of various epoxy-amine …
Students act as engineers to learn about the strengths of various epoxy-amine mixtures and observe the unique characteristics of different mixtures of epoxies and hardeners. Student groups make and optimize thermosets by combining two chemicals in exacting ratios to fabricate the strongest and/or most flexible thermoset possible.
As a culminating activity for "Slaughterhouse-Five", students make a compilation album (a …
As a culminating activity for "Slaughterhouse-Five", students make a compilation album (a CD with 6-8 tracks) that reflects their analysis, understanding, and reaction to the ideas in the novel "Slaughterhouse-Five".
Learn through interactive problem solving – proven to be more effective than …
Learn through interactive problem solving – proven to be more effective than lectures. Enjoy interactive explorations written by award-winning teachers, researchers, and professionals. Brilliant guides you through an interactive exploration of concepts and principles, and helps you build your quantitative intuition. Learn frameworks for thinking and solving challenging problems, instead of memorizing formulas.
Students are introduced to the concept and steps of the engineering design …
Students are introduced to the concept and steps of the engineering design process and taught how to apply it. Students first receive some background information about biomedical engineering (aka bioengineering). Then they learn about material selection and material properties by using a provided guide. In small groups, students learn of their design challenge (improve a cast for a broken arm), brainstorm solutions, are given materials and create prototypes. To finish, teams communicate their design solutions through class poster presentations.
Students work in groups to create soap bubbles on a smooth surface, …
Students work in groups to create soap bubbles on a smooth surface, recording their observations from which they formulate theories to explain what they see (color swirls on the bubble surfaces caused by refraction). Then they apply this theory to thin films in general, including porous films used in biosensors, listing factors that could change the color(s) that become visible to the naked eye, and learn how those factors can be manipulated to give information on gene detection. Finally (by experimentation or video), students see what happens when water is dropped onto the surface of a Bragg mirror.
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal …
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.
Students learn a simple technique for quantifying the amount of photosynthesis that …
Students learn a simple technique for quantifying the amount of photosynthesis that occurs in a given period of time, using a common water plant (Elodea). They can use this technique to compare the amounts of photosynthesis that occur under conditions of low and high light levels. Before they begin the experiment, however, students must come up with a well-worded hypothesis to be tested. After running the experiment, students pool their data to get a large sample size, determine the measures of central tendency of the class data, and then graph and interpret the results.
In this Spreadsheets Across the Curriculum module, students build spreadsheets and draw …
In this Spreadsheets Across the Curriculum module, students build spreadsheets and draw graphs to explore a chemical buffer's ability to resist pH change, i.e., the buffer capacity. Quantification of buffer capacity is conceptually straightforward but involves multiple repetitive calculations. The key relationship is the Henderson-Hasselbalch equation: , which follows from the Law of Mass Action and The spreadsheets automate many of the calculations, thereby simplifying the process. Instead of focusing on the calculations, students can see what buffer capacity means and focus on the a deeper understanding of its implications. After reviewing several buffer calculations, the stduents use the spreadsheet to investigate buffer capacity graphically and characterize blood's physiological buffer system. While solving the question of how many breaths one can take before alkalosis sets in, the students manipulate a logarithmic equation, do "what if" modeling, and analyze rates of change from plots of their cacluated results.
This activity utilizes an online interactive simulation (PhET.colorado.edu) that allows students to …
This activity utilizes an online interactive simulation (PhET.colorado.edu) that allows students to explore and manipulate the subatomic particles that comprise the atom. Students also explore atomic mass, ions, nuclear symbols, and the periodic table. A link to the simulation and a downloadable file that includes a pre-lab, a student activity guide, and a post-lab assessment. The simulation also includes other inquiry opportunities and a game.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.