Search Resources

21 Results

View
Selected filters:
  • Hypothesis
Remix
ACP Less
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Students will use engineering skills to develop and use models as well as collaboratively plan an investigation to make sense of buoyancy.

Remix this template to upload your ACP lesson and unit plans into WISELearn.

Subject:
Oceanography
Education
Character Education
Environmental Science
Physics
Material Type:
Activity/Lab
Learning Task
Lesson
Lesson Plan
Other
Author:
Blake Jersey
Date Added:
01/16/2020
Bubbling Plants
Read the Fine Print
Educational Use
Rating

Students learn a simple technique for quantifying the amount of photosynthesis that occurs in a given period of time, using a common water plant (Elodea). They can use this technique to compare the amounts of photosynthesis that occur under conditions of low and high light levels. Before they begin the experiment, however, students must come up with a well-worded hypothesis to be tested. After running the experiment, students pool their data to get a large sample size, determine the measures of central tendency of the class data, and then graph and interpret the results.

Subject:
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Mary R. Hebrank
Date Added:
09/26/2008
Can You Taste It?
Read the Fine Print
Educational Use
Rating

Few people are aware of how crucial the sense of smell is to identifying foods, or the adaptive value of being able to identify a food as being familiar and therefore safe to eat. In this lesson and activity, students conduct an experiment to determine whether or not the sense of smell is important to being able to recognize foods by taste. The teacher leads a discussion that allows students to explore why it might be adaptive for humans and other animals to be able to identify nutritious versus noxious foods. This is followed by a demonstration in which a volunteer tastes and identifies a familiar food, and then attempts to taste and identify a different familiar food while holding his or her nose and closing his or her eyes. Then, the class develops a hypothesis and a means to obtain quantitative results for an experiment to determine whether students can identify foods when the sense of smell has been eliminated.

Subject:
Technology and Engineering
Nutrition Education
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Engineering K-PhD Program,
Mary R. Hebrank (project and lesson/activity consultant)
Date Added:
09/18/2014
Collaborative Statistics: Custom Version modified by R. Bloom
Unrestricted Use
CC BY
Rating

Collaborative Statistics was written by Barbara Illowsky and Susan Dean, faculty members at De Anza College in Cupertino, California. The textbook was developed over several years and has been used in regular and honors-level classroom settings and in distance learning classes. This textbook is intended for introductory statistics courses being taken by students at two– and four–year colleges who are majoring in fields other than math or engineering. Intermediate algebra is the only prerequisite. The book focuses on applications of statistical knowledge rather than the theory behind it. This custom textbook collection has been modified by R. Bloom for her classes at De Anza College; the homework content for the custom collection is now contained in a separate homework collection.

Subject:
Statistics and Probability
Material Type:
Full Course
Reading
Provider:
Rice University
Provider Set:
Connexions
Author:
Roberta Bloom
Date Added:
10/13/2017
Collaborative Statistics Homework Book: Custom Version modified by R. Bloom
Unrestricted Use
CC BY
Rating

This is a custom collection (by R. Bloom) of homework and review problems to accompany Collaborative Statistics textbook custom collection by R. Bloom. Content is derived from Collaborative Statistics written by Barbara Illowsky and Susan Dean, faculty members at De Anza College in Cupertino, California. The textbook by S. Dean and B. Illowsky was developed over several years and has been used in regular and honors-level classroom settings and in distance learning classes. This textbook is intended for introductory statistics courses being taken by students at two– and four–year colleges who are majoring in fields other than math or engineering. Intermediate algebra is the only prerequisite. The book focuses on applications of statistical knowledge rather than the theory behind it. This custom version of their collection has been modified by R. Bloom for her classes at De Anza College.

Subject:
Statistics and Probability
Material Type:
Full Course
Homework/Assignment
Provider:
Rice University
Provider Set:
Connexions
Author:
Roberta Bloom
Date Added:
10/13/2017
Do Ptarmigans Have Snowshoes?
Read the Fine Print
Educational Use
Rating

Students learn about the amazing adaptations of the ptarmigan to the alpine tundra. They focus one adaptation, the feathered feet of the ptarmigan, and ask whether the feathers serve to only keep the feet warm or to also provide the bird with floatation capability. They create model ptarmigan feet, with and without feathers, and test the hypothesis on the function of the feathers. Ultimately, students make a claim about whether the feathers provide floatation and support this claim with their testing evidence.

Subject:
Technology and Engineering
Zoology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Chelsea Heveran
Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder,
Date Added:
10/14/2015
Does Your Chewing Gum Lose Its Sweetness?
Read the Fine Print
Educational Use
Rating

In the first part of the activity, each student chews a piece of gum until it loses its sweetness, and then leaves the gum to dry for several days before weighing it to determine the amount of mass lost. This mass corresponds to the amount of sugar in the gum, and can be compared to the amount stated on the package label. In the second part of the activity, students work in groups to design and conduct new experiments based on questions of their own choosing. These questions arise naturally from observations during the first experiment, and from students' own experiences with and knowledge of the many varieties of chewing and bubble gums available.

Subject:
Technology and Engineering
Nutrition Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Engineering K-Ph.D. Program,
Mary R. Hebrank (project writer and consultant)
Date Added:
10/14/2015
Experimental Projects II, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Gain practical insight and improved understanding of engineering experimentation through design and execution of "project" experiments. Building upon work in 16.621, students construct and test equipment, make systematic experimental measurements of phenomena, analyze data, and compare theoretical predictions with results. Written final report on entire project and formal oral presentation. Includes instructions on oral presentations. Provides valuable link between theory and practice.

Subject:
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Craig, Jennifer Lynn
Deyst, John J.
Greitzer, Edward
Date Added:
01/01/2003
Experimental Projects I, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Introduces laboratory experimental techniques. Principles of experimental design and reliable measurement. Laboratory safety. Instruction in effective report writing and oral presentation, including revision of written work. Selection and detailed planning of an individual research project, including design of components or equipment. Preparation of a detailed proposal for the selected project carried through to completion under 16.622.

Subject:
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Greitzer, Edward
Date Added:
01/01/2003
How Many Drops?
Read the Fine Print
Educational Use
Rating

In this lesson and its associated activity, students conduct a simple test to determine how many drops of each of three liquids can be placed on a penny before spilling over. The three liquids are water, rubbing alcohol, and vegetable oil; because of their different surface tensions, more water can be piled on top of a penny than either of the other two liquids. However, this is not the main point of the activity. Instead, students are asked to come up with an explanation for their observations about the different amounts of liquids a penny can hold. In other words, they are asked to make hypotheses that explain their observations, and because middle school students are not likely to have prior knowledge of the property of surface tension, their hypotheses are not likely to include this idea. Then they are asked to come up with ways to test their hypotheses, although they do not need to actually test their hypotheses. The important points for students to realize are that 1) the tests they devise must fit their hypotheses, and 2) the hypotheses they come up with must be testable in order to be useful.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Engineering K-PhD Program,
Mary R. Hebrank (project writer and consultant)
Date Added:
09/18/2014
How Much Sugar is in Bubble Gum?
Read the Fine Print
Educational Use
Rating

Most of the flavoring in gum is due to the sugar or other sweetener it contains. As gum is chewed, the sugar dissolves and is swallowed. After a piece of gum loses its flavor, it can be left to dry at room temperature and then the difference between its initial (unchewed) mass and its chewed mass can be used to calculate the percentage of sugar in the gum. This demonstration experiment is used to generate new questions about gums and their ingredients, and students can then design and execute new experiments based on their own questions.

Subject:
Technology and Engineering
Nutrition Education
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Engineering K-PhD Program,
Mary R. Hebrank (project writer and consultant), Duke University
Date Added:
09/18/2014
Let's Get Breezy!
Read the Fine Print
Educational Use
Rating

With the assistance of a few teacher demonstrations (online animation, using a radiometer and rubbing hands), students review the concept of heat transfer through convection, conduction and radiation. Then they apply an understanding of these ideas as they use wireless temperature probes to investigate the heating capacity of different materials sand and water under heat lamps (or outside in full sunshine). The experiment models how radiant energy drives convection within the atmosphere and oceans, thus producing winds and weather conditions, while giving students the hands-on opportunity to understand the value of remote-sensing capabilities designed by engineers. Students collect and record temperature data on how fast sand and water heat and cool. Then they create multi-line graphs to display and compare their data, and discuss the need for efficient and reliable engineer-designed tools like wireless sensors in real-world applications.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Constance Garza, Mounir Ben Ghalia
RET-ENET Program, Electrical Engineering Department,
Date Added:
10/14/2015
Osmosis, A Gummy Bear Experiment
Restricted Use
Copyright Restricted
Rating

This resource provides a nice example of how osmosis happens  through a membrane. It includes definitions, examples, analogies, a chance at writing a hypothesis, an experiment with a log to keep track of results, and graphs to record data.

Subject:
Biology
Material Type:
Learning Task
Simulation
Provider:
Learning Fundamentals and Educational Therapy Resources
Date Added:
02/10/2017
Students as Scientists
Read the Fine Print
Educational Use
Rating

Through two lessons and their associated activities, students do the work of scientists by designing their own experiments to answer questions they generate. Through a simple activity involving surface tension, students learn what a hypothesis is—and isn't—and why generating a hypothesis is an important aspect of the scientific method. In the second activity, with bubble gum to capture their interest, students learn to design and conduct controlled experiments to answer their own questions about the amounts of sugar (or artificial sweetener) in bubble or chewing gum.

Subject:
Education
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Engineering K-Ph.D. Program,
Mary R. Hebrank (project writer and consultant), Duke University
Date Added:
10/14/2015
Study Design for Air Quality Research
Read the Fine Print
Educational Use
Rating

Students take an in-depth look at what goes into planning a research project, which prepares them to take the lead on their own projects. Examining a case study, students first practice planning a research project that compares traditional cook stoves to improved cook stoves for use in the developing world. Then they compare their plans to one used in the real-world by professional researchers, gaining perspective and details on the thought and planning that goes into good research work. Then students are provided with example materials, a blank template and support to take them from brainstorming to completing a detailed research plan for their own air quality research projects. Conducting students’ AQ-IQ research studies requires additional time and equipment beyond this planning activity. Then after the data is collected and analyzed, teams interpret the data and present summary research posters by conducting the next associated activity Numerous student handouts and a PowerPoint® presentation are provided.

Subject:
Career and Technical Education
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
AirWaterGas SNR Project Education and Outreach, College of Engineering, University of Colorado Boulder
Ashley Collier
Ben Graves
Daniel Knight
Drew Meyers
Eric Ambos
Eric Lee
Erik Hotaling
Evan Coffey
Hanadi Adel Salamah
Joanna Gordon
Katya Hafich
Michael Hannigan
Nicholas VanderKolk
Olivia Cecil
Victoria Danner
Date Added:
10/13/2017
A Tasty Experiment
Read the Fine Print
Educational Use
Rating

Students conduct an experiment to determine whether or not the sense of smell is important to being able to recognize foods by taste. They do this by attempting to identify several different foods that have similar textures. For some of the attempts, students hold their noses and close their eyes, while for others they only close their eyes. After they have conducted the experiment, they create bar graphs showing the number of correct and incorrect identifications for the two different experimental conditions tested.

Subject:
Technology and Engineering
Nutrition Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Engineering K-PhD Program,
Mary R. Hebrank (project and lesson/activity consultant)
Date Added:
10/14/2015
Wet Pennies
Read the Fine Print
Educational Use
Rating

Students conduct a simple test to determine how many drops of each of three liquids water, rubbing alcohol, vegetable oil can be placed on a penny before spilling over. Because of their different surface tensions, more water can be piled on top of a penny than either of the other two liquids. However, the main point of the activity is for students to come up with an explanation for their observations about the different amounts of liquids a penny can hold. To do this, they create hypotheses that explain their observations, and because middle school students are not likely to have prior knowledge of the property of surface tension, their hypotheses are not likely to include this idea. Then they are asked to come up with ways to test their hypotheses, although they do not need to actually conduct these tests as part of this activity.

Subject:
Technology and Engineering
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Engineering K-PhD Program,
Mary R. Hebrank (project writer and consultant)
Date Added:
10/14/2015