In this playful introduction to the world of bacteria, players create a …
In this playful introduction to the world of bacteria, players create a simple visual representation of bacteria reproduction, mutation, and antibiotic resistance. Click to add bacteria and watch as they reproduce, mutate, and pass on their attributes.
The web quest and accompanying handout takes students through the experiments of …
The web quest and accompanying handout takes students through the experiments of Oswald Avery, Fredrick Griffith, Alfred Hershey, & Martha Chase chronicling the events that led to the discovery that a gene is made of DNA.
" In this class, students engage in independent research projects to probe …
" In this class, students engage in independent research projects to probe various aspects of the physiology of the bacteriumĺĘPseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notice "
Since the discovery of the structure of the DNA double helix in …
Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.
Build a gene network! The lac operon is a set of genes …
Build a gene network! The lac operon is a set of genes which are responsible for the metabolism of lactose in some bacterial cells. Explore the effects of mutations within the lac operon by adding or removing genes from the DNA.
Build a gene network! The lac operon is a set of genes …
Build a gene network! The lac operon is a set of genes which are responsible for the metabolism of lactose in some bacterial cells. Explore the effects of mutations within the lac operon by adding or removing genes from the DNA.
" This course provides a foundation for understanding the relationship between molecular …
" This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics."
Subject assesses the relationships between sequence, structure, and function in complex biological …
Subject assesses the relationships between sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive functional-genomics analyses. Topics include: algorithmic, statistical, database, and simulation approaches; and practical applications to biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations critically assessed. Problem sets and project emphasize creative, hands-on analyses using these concepts.
Using three-dimensional scaffolds, these materials address the following topics: - Structure & Function …
Using three-dimensional scaffolds, these materials address the following topics: - Structure & Function of DNA. - DNA Replication via Polymerase. - Transcription & Translation. - Codons & Amino Acids Sequences. Each packet is broken into five parts - data dive, core ideas, investigations, asssessments, and life connections. Formative assessments and checkpoints are embedded throughout each packet. The final packet prepares students for a summative assessment, with a provided practice assessment. Implementation instructions are embedded for each component of each packet. PDFs are included as attachments (in case the file formats are altered by this system).
Using three-dimensional scaffolds, these materials address the following topics: - Relationships between DNA, …
Using three-dimensional scaffolds, these materials address the following topics: - Relationships between DNA, proteins, and traits.- How mitosis enables each cell to receive a copy of DNA.- How gametes like sperm and eggs are formed and transmit parents' genes to offspring. - Predicting traits based on parents' genotypes and phenotypes using Punnett squares. Each packet is broken into five parts - data dive, core ideas, investigations, asssessments, and life connections. Formative assessments and checkpoints are embedded throughout each packet. The final packet prepares students for a summative assessment, with a provided practice assessment.Implementation instructions are embedded for each component of each packet. PDFs are included as attachments (in case the file formats are altered by this system).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.