Updating search results...

Search Resources

74 Results

View
Selected filters:
  • density
Rock and Boat
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a challenge question that they must answer with scientific and mathematical reasoning. The challenge question is: "You have a large rock on a boat that is floating in a pond. You throw the rock overboard and it sinks to the bottom of the pond. Does the water level in the pond rise, drop or remain the same?" Students observe Archimedes' principle in action in this model recreation of the challenge question when a toy boat is placed in a container of water and a rock is placed on the floating boat. Students use terminology learned in the classroom as well as critical thinking skills to derive equations needed to answer this question.

Subject:
Career and Technical Education
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington, Mila Taylor
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
TeachEngineering.org
Date Added:
09/18/2014
Saltwater Circuit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.

Subject:
Career and Technical Education
Chemistry
Ecology
Environmental Science
Forestry and Agriculture
Life Science
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Integrated Teaching and Learning Program,
Juan Ramirez Jr.
Stephanie Rivale
TeachEngineering.org
Date Added:
09/18/2014
The Search for Surfactants: What Is the Best Soap?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams are challenged to evaluate the design of several liquid soaps to answer the question, “Which soap is the best?” Through two simple teacher class demonstrations and the activity investigation, students learn about surface tension and how it is measured, the properties of surfactants (soaps), and how surfactants change the surface properties of liquids. As they evaluate the engineering design of real-world products (different liquid dish washing soap brands), students see the range of design constraints such as cost, reliability, effectiveness and environmental impact. By investigating the critical micelle concentration of various soaps, students determine which requires less volume to be an effective cleaning agent, factors related to both the cost and environmental impact of the surfactant. By investigating the minimum surface tension of the soap, students determine which dissolves dirt and oil most effectively and thus cleans with the least effort. Students evaluate these competing criteria and make their own determination as to which of five liquid soaps make the “best” soap, giving their own evidence and scientific reasoning. They make the connection between gathered data and the real-world experience in using these liquid soaps.

Subject:
Algebra
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Lauchlin Blue
Nanotechnology RET, Department of Earth Science, School Science and Technology, Rice University
Shawn Richard
Date Added:
10/13/2017
So What Is the Density?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review what they know about the 20 major bones in the human body (names, shapes, functions, locations, as learned in the associated lesson) and the concept of density (mass per unit of volume). Then student pairs calculate the densities for different bones from a disarticulated human skeleton model of fabricated bones, making measurements via triple-beam balance (for mass) and water displacement (for volume). All groups share their results with the class in order to collectively determine the densities for every major bone in the body. This activity prepares students for the next activity, "Can It Support You? No Bones about It," during which they act as biomedical engineers and design artificial bones, which requires them to find materials of suitable density to perform as human body implants.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering, Worcester Polytechnic Institute,
Michelle Gallagher, Terri Camesano, Jeanne Hubelbank, Kristen Billiar
Date Added:
10/14/2015
Solid and Liquid Density Investigation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will explore with solids and liquids to discover what density is. Students will be involved in small group experiments and a full group experiment. Observing, predicting, exploring and discovering are all included in this lesson.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Rhonda Powell
Date Added:
02/10/2023
Taking the Boat to Manaus
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, the students will apply the concepts they learned regarding mass, volume and density in the previous activities to design a boat.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Adventure Engineering,
Date Added:
09/18/2014
Under Pressure
Unrestricted Use
CC BY
Rating
0.0 stars

Explore pressure under and above water. See how pressure changes as you change fluids, gravity, container shapes, and volume.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Kathy Perkins
Noah Podolefsky
PhET Interactive Simulations
Sam Reid
Trish Loeblein
Date Added:
05/29/2012
Urban Design, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

For many years, Cambridge, MA, as host to two major research universities, has been the scene of debates as to how best to meet the competing expectations of different stakeholders. Where there has been success, it has frequently been the result, at least in part, of inventive urban design proposals and the design and implementation of new institutional arrangements to accomplish those proposals. Where there has been failure it has often been explained by the inability - or unwillingness - of one stakeholder to accept and accommodate the expectations of another. The two most recent fall Urban Design Studios have examined these issues at a larger scale. In 2001 we looked at the possible patterns for growth and change in Cambridge, UK, as triggered by the plans of Cambridge University. And in 2002 we looked at these same issues along the length of the MIT 'frontier' in Cambridge, MA as they related to the development of MIT and the biotech research industry. In the fall 2003 Urban Design Studio we propose to focus in on an area adjacent to Cambridgeport and the western end of the MIT campus, roughly centered on Fort Washington. Our goal is to discover the ways in which good urban form, an apt mix of activities, and effective institutional mechanisms might all be brought together in ways that respect shared expectations and reconcile competing expectations - perhaps in unexpected and adroit ways.

Subject:
Art and Design
Business and Information Technology
Career and Technical Education
Fine Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Burns, Carol
De Monchaux, John
Date Added:
01/01/2003
Urban Design Studio: Providence
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This studio discusses in great detail the design of urban environments, specifically in Providence, RI. It will propose strategies for change in large areas of cities, to be developed over time, involving different actors. Fitting forms into natural, man-made, historical, and cultural contexts; enabling desirable activity patterns; conceptualizing built form; providing infrastructure and service systems; guiding the sensory character of development: all are topics covered in the studio. The course integrates architecture and planning students in joint work and requires individual designs and planning guidelines as a final product.

Subject:
Economics
Social Studies
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Greg Morrow
MIchael Dennis
Date Added:
02/09/2023
Urban Design Studio: Providence, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The design of urban environments. Strategies for change in large areas of cities, to be developed over time, involving different actors. Fitting forms into natural, man-made, historical, and cultural contexts; enabling desirable activity patterns; conceptualizing built form; providing infrastructure and service systems; guiding the sensory character of development. Involves architecture and planning students in joint work; requires individual designs or design and planning guidelines.

Subject:
Art and Design
Business and Information Technology
Career and Technical Education
Fine Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dennis, Michael
Morrow, Greg
Date Added:
01/01/2005
What Floats Your Boat?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use modeling clay, a material that is denser than water and thus ordinarily sinks in water, to discover the principle of buoyancy. They begin by designing and building boats out of clay that will float in water, and then refine their designs so that their boats will carry as great a load (metal washers) as possible. Building a clay boat to hold as much weight as possible is an engineering design problem. Next, they compare amount of water displaced by a lump of clay that sinks to the amount of water displaced by the same lump of clay when it is shaped so as to float. Determining the masses of the displaced water allows them to arrive at Archimedes' principle, whereby the mass of the displaced water equals the mass of the floating clay boat.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Engineering K-PhD Program,
Mary R. Hebrank
Mary R. Hebrank (project writer and consultant )
TeachEngineering.org
Date Added:
09/18/2014
What's Up with All This Traffic?
Read the Fine Print
Educational Use
Rating
0.0 stars

Expanding on the topic of objects in motion covering Newton's laws of motion, acceleration and velocity, which are taught starting in third grade, students are introduced to new concepts of speed, density, level of service (LOS) (quality of roadways), delay and congestion. Every day we are affected by congestion even if we do not step out of our homes. For example, the price we pay for goods increases due to increases in shipping costs caused by congestion delays. A congestion metric would help us to compare roadways and assess improvement methods. A common metric used to measure congestion is called level of service (LOS).

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Dayna Lee Martinez
Javier Fuentes
Patricio Rocha
STARS GK-12 Program,
Tapas K. Das
Date Added:
09/18/2014
Wisconsin Critter Count
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

The Wisconsin Department of Natural Resources uses a variety of tools and techniques to monitor wildlife, and to produce population estimates to better inform management decisions. Population estimates are used to look at long term trends, as well as setting harvest limits during hunting seasons for potentially vulnerable species. There are two count methods for generating population information: sample counts and total counts. In total counts, every individual of an intended geographic area is counted. For sample counts, a smaller fraction of individuals are counted and the data is used to interpolate population information for the entire geographic area. In this activity, you will create a model for these two different count methods and explore the advantages and disadvantages to both approaches.

Subject:
Agriculture, Food and Natural Resources
Career and Technical Education
Ecology
Environmental Literacy and Sustainability
Life Science
Material Type:
Lesson
Lesson Plan
Date Added:
05/08/2019