Updating search results...

Search Resources

81 Results

View
Selected filters:
  • Anatomy/Physiology
Crash Testing & Highway Safety - Insurance Institute for Highway Safety
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Why do some crashes produce only minor injuries? How can a single crash of a car into a wall involve three separate collisions? Award-winning science teacher Griff Jones returns to the Institute's Vehicle Research Center to answer these questions and to examine the laws of nature that determine what happens to the human body in a crash. Jones reviews levels of organization in the body and explains how body cavities house and protect major internal organs. Through creative experiments, he explores how the third collision can cause injuries to organs, demonstrates how shockwaves can damage tissue and describes what happens at the cellular level.

Great 24 minute video with 37 page Teachers guide with a video worksheet and extension activities
https://education.ufl.edu/gjones/files/2012/09/teachers_guideBioPhysics.pdf

Subject:
Anatomy/Physiology
Biology
Life Science
Physical Science
Physics
Material Type:
Homework/Assignment
Author:
501(c)(3) organizations
Highway Loss Data Institute
Insurance Institute for Highway Safety
©1996-2018
Date Added:
11/13/2018
Designing Your Life, January IAP 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course provides an exciting, eye-opening, and thoroughly useful inquiry into what it takes to live an extraordinary life, on your own terms. The instructors address what it takes to succeed, to be proud of your life, and to be happy in it. Participants tackle career satisfaction, money, body, vices, and relationship to themselves and others. They learn how to address issues in their lives, how to live life, and how to learn from it. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This not-for-credit course is sponsored by the Department of Science, Technology, and Society. A similar, semester-long version of this course is taught in the Sloan Fellows Program. A semester-long extension of the IAP course is also taught to the population at large of MIT (please see PE.550, Spring). Acknowledgment The instructors would like to thank Prof. David Mindell for his sponsorship of this course, his intention for its continued expansion, and his commitment to the well-being of MIT students."

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jordan, Gabriella
Zander, Lauren
Date Added:
01/01/2007
Diffusion across semipermeable membranes
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

Biological membranes are selectively permeable; some molecules can cross while others cannot. One way to affect this is through pore size. Change the pore size with the slider to change the permeability of the membrane to the different types of molecules. Trace an individual molecule to see the path it takes.

Subject:
Anatomy/Physiology
Biology
Life Science
Material Type:
Game
Interactive
Simulation
Date Added:
08/02/2019
Digestion Simulation
Read the Fine Print
Educational Use
Rating
0.0 stars

To reinforce students' understanding of the human digestion process, the functions of several stomach and small intestine fluids are analyzed, and the concept of simulation is introduced through a short, introductory demonstration of how these fluids work. Students learn what simulation means and how it relates to the engineering process, particularly in biomedical engineering. The teacher demo requires vinegar, baking soda, water and aspirin.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Jacob Crosby
Malinda Schaefer Zarske
Date Added:
09/18/2014
Digestive System
Read the Fine Print
Educational Use
Rating
0.0 stars

The digestive system is amazing: it takes the foods we eat and breaks them into smaller components that our body can use for energy, cell repair and growth. This lesson introduces students to the main parts of the digestive system and how they interact. In addition, students learn about some of the challenges astronauts face when trying to eat in outer space.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Sara Born
Date Added:
09/18/2014
Eating & Exercise
Unrestricted Use
CC BY
Rating
0.0 stars

How many calories are in your favorite foods? How much exercise would you have to do to burn off these calories? What is the relationship between calories and weight? Explore these issues by choosing diet and exercise and keeping an eye on your weight.

Subject:
Anatomy/Physiology
Biology
Career and Technical Education
Ecology
Forestry and Agriculture
Health Science
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Interactive
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams
Benay
Franny
Franny Benay
Kate
Kate Semsar
Kathy
Kathy Perkins
Noah
Noah Podolefsky
Perkins
PhET Interactive Simulations
Podolefsky
Reid
Sam
Sam Reid
Semsar
Wendy
Wendy Adams
Date Added:
10/01/2008
Endocrine Excitement!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students are divided into a group of hormones and a group of receptors. The hormones have to find their matching receptors, and the pair, once matched, perform a given action. This activity helps students learn about the specificity of hormone-receptor interactions within the endocrine system.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Engineering Bones
Read the Fine Print
Educational Use
Rating
0.0 stars

Students extend their knowledge of the skeletal system to biomedical engineering design, specifically the concept of artificial limbs. Students relate the skeleton as a structural system, focusing on the leg as structural necessity. They learn about the design considerations involved in the creation of artificial limbs, including materials and sensors.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Engineering and the Human Body
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit covers the broad spectrum of topics that make-up our very amazing human body. Students are introduced to the space environment and learn the major differences between the environment on Earth and that of outer space. The engineering challenges that arise because of these discrepancies are also discussed. Then, students dive into the different components that make up the human body: muscles, bones and joints, the digestive and circulatory systems, the nervous and endocrine systems, the urinary system, the respiratory system, and finally the immune system. Students learn about the different types of muscles in the human body and the effects of microgravity on muscles. Also, they learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. In the lessons on the digestive, circulatory, nervous and endocrine systems, students learn how these vital system work and the challenges faced by astronauts whose systems are impacted by spaceflight. And lastly, advances in engineering technology are discussed through the lessons on the urinary, respiratory and immune systems while students learn how these systems work with all the other body components to help keep the human body healthy.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
Date Added:
10/14/2015
Engineering the Heart: Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how healthy human heart valves function and the different diseases that can affect heart valves. They also learn about devices and procedures that biomedical engineers have designed to help people with damaged or diseased heart valves. Students learn about the pros and cons of different materials and how doctors choose which engineered artificial heart valves are appropriate for certain people.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Ben Terry
Brandi Briggs
Carleigh Samson
Integrated Teaching and Learning Program,
Date Added:
09/18/2014
Fencing, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is intended to provide students with the fundamentals of fencing, including footwork, bladework, bouting and refereeing. It will allow students to develop the ability to analyze a fencing bout, and promotes creativity in applying acquired skills in a fencing bout.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Koniusz, Jaroslav
Date Added:
01/01/2007
Fighting Back! (Lesson)
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson describes the major components and functions of the immune system and the role of engineers in keeping the body healthy (e.g., vaccinations and antibiotics, among other things). This lesson also discusses how an astronaut's immune system is suppressed during spaceflight due to stress and other environmental factors.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Teresa Ellis
Date Added:
09/18/2014
Forced to Fracture
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how forces affect the human skeletal system through fractures and why certain bones are more likely to break than others depending on their design and use in the body. They learn how engineers and doctors collaborate to design effective treatments with consideration for the location, fracture severity and patient age, as well as the use of biocompatible materials. Learning the lesson content prepares students for the associated activity in which they test small animal bones to failure and then design treatment repair plans.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Andrea Lee, Megan Ketchum
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Functional Feet: How Foot Structure Connects to Bird Survival
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a classroom and field activity in which students record observations of birds in their natural habitat and make connections between the structure and function of the bird feet.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Marja Steinberg
Date Added:
02/10/2023
Functional MRI of High-Level Vision, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" We are now at an unprecedented point in the field of neuroscience: We can watch the human brain in action as it sees, thinks, decides, reads, and remembers. Functional magnetic resonance imaging (fMRI) is the only method that enables us to monitor local neural activity in the normal human brain in a noninvasive fashion and with good spatial resolution. A large number of far-reaching and fundamental questions about the human mind and brain can now be answered using straightforward applications of this technology. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information including object recognition, mental imagery, visual attention, perceptual awareness, visually guided action, and visual memory. The goals of this course are to help students become savvy and critical readers of the current neuroimaging literature, to understand the strengths and weaknesses of the technique, and to design their own cutting-edge, theoretically motivated studies. Students will read, present to the class, and critique recently published neuroimaging articles, as well as write detailed proposals for experiments of their own. Lectures will cover the theoretical background on some of the major areas in high-level vision, as well as an overview of what fMRI has taught us and can in future teach us about each of these topics. Lectures and discussions will also cover fMRI methods and experimental design. A prior course in statistics and at least one course in perception or cognition are required."

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kanwisher, Nancy
Date Added:
01/01/2007
Functional Magnetic Resonance Imaging: Data Acquisition and Analysis, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment. Additional Faculty Div Bolar Dr. Bradford Dickerson Dr. John Gabrieli Dr. Doug Greve Dr. Karl Helmer Dr. Dara Manoach Dr. Jason Mitchell Dr. Christopher Moore Dr. Vitaly Napadow Dr. Jon Polimeni Dr. Sonia Pujol Dr. Bruce Rosen Dr. Mert Sabuncu Dr. David Salat Dr. Robert Savoy Dr. David Somers Dr. A. Gregory Sorensen Dr. Christina Triantafyllou Dr. Wim Vanduffel Dr. Mark Vangel Dr. Lawrence Wald Dr. Susan Whitfield-Gabrieli Dr. Anastasia Yendiki "

Subject:
Anatomy/Physiology
Life Science
Physical Science
Physics
Psychology
Social Studies
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gollub, Randy
Date Added:
01/01/2008
Gastroenterology, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Presents the anatomy, physiology, biochemistry, biophysics, and bioengineering of the gastrointestinal tract and associated pancreatic, liver, and biliary systems. Emphasis on the molecular and pathophysiological basis of disease where known. Covers gross and microscopic pathology and clinical aspects. Formal lectures given by core faculty, with some guest lectures by local experts. Selected seminars conducted by students with supervision of faculty. Permission of instructor required. (Only HST students may register under HST.120, graded P/D/F.) The most recent knowledge of the anatomy, physiology, biochemistry, biophysics, and bioengineering of the gastrointestinal tract and the associated pancreatic, liver and biliary tract systems is presented and discussed. Gross and microscopic pathology and the clinical aspects of important gastroenterological diseases are then presented, with emphasis on integrating the molecular, cellular and pathophysiological aspects of the disease processes to their related symptoms and signs.

Subject:
Anatomy/Physiology
Education
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Carey, Martin
Chung, Raymond
Glickman, Jonathan
Date Added:
01/01/2005
Hearing: How Do Our Ears Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the anatomy of the ear and how the ears work as a sound sensor. Ear anatomy parts and structures are explained in detail, as well as how sound is transmitted mechanically and then electrically through them to the brain. Students use LEGO® robots with sound sensors to measure sound intensities, learning how the NXT brick (computer) converts the intensity of sound measured by the sensor input into a number that transmits to a screen. They build on their experiences from the previous activities and establish a rich understanding of the sound sensor and its relationship to the TaskBot's computer.

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
GK-12 Program, Computational Neurobiology Center, College of Engineering,
Marianne Catanho, Sachin Nair, Charlie Franklin, Satish Nair
Date Added:
09/18/2014
The Heart of the Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson describes how the circulatory system works, including the heart, blood vessels and blood. Students learn about the chambers and valves of the heart, the difference between veins and arteries, and the different components of blood. This lesson also covers the technology engineers have developed to repair the heart if it is damaged. Students also understand how the circulatory system is affected during spaceflight (e.g., astronauts lose muscle in their heart during space travel).

Subject:
Anatomy/Physiology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Jessica Todd
Julie Marquez
Malinda Schaefer Zarske
Sara Born
Teresa Ellis
Date Added:
09/18/2014