For students interested in studying biomechanical engineering, especially in the field of …
For students interested in studying biomechanical engineering, especially in the field of surgery, this lesson serves as an anatomy and physiology primer of the abdominopelvic cavity. Students are introduced to the abdominopelvic cavity—a region of the body that is the focus of laparoscopic surgery—as well as the benefits and drawbacks of laparoscopic surgery. Understanding the abdominopelvic environment and laparoscopic surgery is critical for biomechanical engineers who design laparoscopic surgical tools.
I use this tool with students who are struggling with adding and …
I use this tool with students who are struggling with adding and subtracting fractions with unlike denominators. In the beginning this can be an overwhelming task for many students. I have found that this tool can help those struggling students build their confidence.At this point there are students who need help generating their equivalent fractions, this tool can help. Students often struggle in keeping their thinking or work organized, again this tool can help. The work on the tool is also set up to help students see that they need to multiply the numerator and denominator by the same number. Students will see that the multiplier is 2/2, 5/5, or 7/7. So the tool also helps reinforce the idea that these fractions are equivalent because they are multiplying them by 1, 2/2 = 1.Laminate the worksheet so students can use it as often as they need it.
Students construct bird nests and birdhouses. They research birds of their choosing …
Students construct bird nests and birdhouses. They research birds of their choosing and then design houses that meet the birds' specific needs. It works well to conduct this activity in conjunction with a grades 9-12 woodshop class by partnering the older students with the younger students (but it is not required to do this in order to conduct the activity).
Students teams use a laparoscopic surgical trainer to perform simple laparoscopic surgery …
Students teams use a laparoscopic surgical trainer to perform simple laparoscopic surgery tasks (dissections, sutures) using laparoscopic tools. Just like in the operating room, where the purpose is to perform surgery carefully and quickly to minimize patient trauma, students' surgery time and mistakes are observed and recorded to quantify their performances. They learn about the engineering component of surgery.
Meet the Data Decoders—a team of scientists at the Solís-Lemus Lab who …
Meet the Data Decoders—a team of scientists at the Solís-Lemus Lab who use math and computers to interpret huge amounts of data from biological experiments.
Resources available for learning about this lab include: • Interactive cards designed to introduce students to scientists in a more personal way • A video with a personal story that explains why the lab's research matters in real life • Questions to consider that will spark connection, reflection, and conversation • An interactive video experience where you can ask questions of scientists in the lab and learn about their research • An inquiry-based activity that focuses on doing science, using some of the same science practices that the lab uses • An educator guide with information about standards alignment, curriculum connections, and tips for using the media resources
These resources are part of Meet the Lab, a collection of educational resources for middle school science classrooms.
Student teams create laparoscopic surgical robots designed to reduce the invasiveness of …
Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, which must fit through small incisions, inspect the organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. Note: This activity is the core design project for a semester-long, three-credit high school engineering course. Refer to the associated curricular unit for preparatory lessons and activities.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines the wedge, wheel and axle, lever, inclined plane, screw, and pulley in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier, and which people have used to provide mechanical advantage for thousands of years. Students learn about the wedge, wheel and axle, lever, inclined plane, screw and pulley in the context of the construction of a pyramid, gaining insights into tools that have been used since ancient times and are still important today. Through numerous hands-on activities, students imagine themselves as ancient engineers building a pyramid. Student teams evaluate and select a construction site, design a pyramid, perform materials calculations, test a variety of cutting wedges on different materials, design a small-scale cart/lever transport system to convey building materials, experiment with the angle of inclination and pull force on an inclined plane, see how a pulley can change the direction of force, and learn the differences between fixed, movable and combined pulleys. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.
Students learn about common geometry tools and then learn to use protractors …
Students learn about common geometry tools and then learn to use protractors (and Miras, if available) to create and measure angles and reflections. The lesson begins with a recap of the history and modern-day use of protractors, compasses and mirrors. After seeing some class practice problems and completing a set of worksheet-prompted problems, students share their methods and work. Through the lesson, students gain an awareness of the pervasive use of angles, and these tools, for design purposes related to engineering and everyday uses. This lesson prepares students to conduct the associated activity in which they “solve the holes” for hole-in-one multiple-banked angle solutions, make their own one-hole mini-golf courses with their own geometry-based problems and solutions, and then compare their “on paper” solutions to real-world results.
Students discover the scientific basis for the use of inclined planes. Using …
Students discover the scientific basis for the use of inclined planes. Using a spring scale, a bag of rocks and an inclined plane, student groups explore how dragging objects up a slope is easier than lifting them straight up into the air. Also, students are introduced to the scientific method and basic principles of experimentation. To conclude, students imagine and design their own uses for inclined planes.
Students are introduced to the concept of simple tools and how they …
Students are introduced to the concept of simple tools and how they can make difficult or impossible tasks easier. They begin by investigating the properties of inclined planes and how implementing them can reduce the force necessary to lift objects off the ground.
Students learn how simple machines, including wedges, were used in building both …
Students learn how simple machines, including wedges, were used in building both ancient pyramids and present-day skyscrapers. In a hands-on activity, students test a variety of wedges on different materials (wax, soap, clay, foam). Students gain an understanding of how simple machines are used in engineering applications to make our lives and work easier.
Students continue their pyramid building journey, acting as engineers to determine the …
Students continue their pyramid building journey, acting as engineers to determine the appropriate wedge tool to best extract rock from a quarry and cut into pyramid blocks. Using sample materials (wax, soap, clay, foam) representing rock types that might be found in a quarry, they test a variety of wedges made from different materials and with different degrees of sharpness to determine which is most effective at cutting each type of material.
Students act as surgical residents for the day. Working in teams, they …
Students act as surgical residents for the day. Working in teams, they use surgical instruments to complete tasks that are inside of a box, hidden from direct view. They are able to see inside of the box with the help of a "laparoscope" (webcam and flashlight). This engaging activity shows students one application of engineered medical instrumentation and gives them first-hand experience in seeing how form fits function. They also learn that an engineer's job does not end with a finished product because s/he must train others to use the device correctly.
Students at Miles College in Birmingham developed this "crib sheet" and questionnaire …
Students at Miles College in Birmingham developed this "crib sheet" and questionnaire to help black citizens become registered voters and to document racial discrimination in the voting process in the 1950s.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.