As an introduction to bioengineering, student teams are given the engineering challenge …
As an introduction to bioengineering, student teams are given the engineering challenge to design and build prototype artificial limbs using a simple syringe system and limited resources. As part of a NASA lunar mission scenario, they determine which substance, water (liquid) or air (gas), makes the appendages more efficient.
Students are introduced to chemical engineering and learn about its many different …
Students are introduced to chemical engineering and learn about its many different applications. They are provided with a basic introduction to matter and its different properties and states. An associated hands-on activity gives students a chance to test their knowledge of the states of matter and how to make observations using their five senses: touch, smell, sound, sight and taste.
The project is called "Chemistry and Cooking" and it will last about …
The project is called "Chemistry and Cooking" and it will last about 6 weeks. Students will learn about what matter is, the phases of matter, the difference between physical and chemical properties, as well as physical and chemical changes. The project’s Driving Question, which focuses our work, is “How does an understanding of chemistry impact your cooking?” Students will be involved in hands-on activities and labs that will help them learn the concepts that they will then apply to their final project. The child will work independently on a recipe of their choice to show their understanding of how chemistry impacts cooking.
This lesson plan introduces the properties of mixtures and solutions. A class …
This lesson plan introduces the properties of mixtures and solutions. A class demonstration gives the students the opportunity to compare and contrast the physical characteristics of a few simple mixtures and solutions. Students discuss the separation of mixtures and solutions back into their original components as well as different engineering applications of mixtures and solutions.
Through three lessons and their four associated activities, students are introduced to …
Through three lessons and their four associated activities, students are introduced to concepts related to mixtures and solutions. Students consider how mixtures and solutions and atoms and molecules can influence new technologies developed by engineers. To begin, students explore the fundamentals of atoms and their structures. The building blocks of matter (protons, electrons, neutrons) are covered in detail. The next lesson examines the properties of elements and the periodic table one method of organization for the elements. The concepts of physical and chemical properties are also reviewed. Finally, the last lesson introduces the properties of mixtures and solutions. A comparison of different mixtures and solutions, their properties and their separation qualities are explored.
" This course presents the mechanical, optical, and transport properties of polymers …
" This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems."
Students are given a variety of materials and asked to identify each …
Students are given a variety of materials and asked to identify each material as a solid, liquid or gas. They use their five senses ŰÓ sight, sound, smell, texture and taste ŰÓ to identify the other characteristics of each item.
Students will diagram and identify a change of state. Students will describe …
Students will diagram and identify a change of state. Students will describe the energy, spacing and speed of the particles before and after this change.
Based on a student activity where students danced around the room acting as particles, students will identify an incorrect action during the dance. They will explain why the action did not fit the particle model and how it could be corrected. See below for an idea this is based on. https://www.youtube.com/watch?v=SWQCUQ_UZiA
Students act as chemical engineers and use LEGO® MINDSTORMS® NXT robotics to …
Students act as chemical engineers and use LEGO® MINDSTORMS® NXT robotics to record temperatures and learn about the three states of matter. Properties of matter can be measured in various ways, including volume, mass, density and temperature. Students measure the temperature of water in its solid state (ice) as it is melted and then evaporated.
Students explore how sound waves move through liquids, solids and gases in …
Students explore how sound waves move through liquids, solids and gases in a series of simple sound energy experiments. Understanding the properties of sound and how sound waves travel helps engineers determine the best room shape and construction materials when designing sound recording studios, classrooms, libraries, concert halls and theatres.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.