Updating search results...

Search Resources

1864 Results

View
Selected filters:
  • Technology and Engineering
Design and Fabrication of Microelectromechanical Devices, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to microelectromechanical devices (MEMS). Material properties, microfabrication technologies, structural behavior, piezoresistive and capacitive sensing, electrostatic actuation, fluid damping, noise, amplifiers, and feedback systems. Student teams design microsystems (sensors, electronics, and feedback) to meet a set of specifications (sensitivity, frequency response, linearity) using a realistic microfabrication process. Emphasis on modeling and simulation in the design process.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Livermore, Carol
Voldman, Joel
Date Added:
01/01/2007
Design for Sustainability, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Adams, Eric
Date Added:
01/01/2006
Designing Bridges
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the types of possible loads, how to calculate ultimate load combinations, and investigate the different sizes for the beams (girders) and columns (piers) of simple bridge design. Students learn the steps that engineers use to design bridges: understanding the problem, determining the potential bridge loads, calculating the highest possible load, and calculating the amount of material needed to resist the loads.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Christopher Valenti
Denali Lander
Denise W. Carlson
Integrated Teaching and Learning Program and Laboratory,
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Designing Medical Devices for the Ear
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to engineering, specifically to biomedical engineering and the engineering design process, through a short lecture and an associated hands-on activity in which they design their own medical devices for retrieving foreign bodies from the ear canal. Through the lesson, they learn the basics of ear anatomy and how ear infections occur and are treated. Besides antibiotic treatment, the most common treatment for chronic ear infections is the insertion of ear tubes to drain fluid from the middle ear space to relieve pressure on the ear drum. Medical devices for this procedure, a very common children's surgery, are limited, sometimes resulting in unnecessary complications from a simple procedure. Thus, biomedical engineers must think creatively to develop new solutions (that is, new and improved medical devices/instruments) for inserting ear tubes into the ear drum. The class learns the engineering design process from this ear tube example of a medical device design problem. In the associated activity, students explore biomedical engineering on their own by designing prototype medical devices to solve another ear problem commonly experienced by children: the lodging of a foreign body (such as a pebble, bead or popcorn kernel) in the ear canal. The activity concludes by teams sharing and verbally analyzing their devices.

Subject:
Career and Technical Education
Health Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Biomedical Engineering,
Derek Harbin
Krista Warner
Leyf Starling
Shayn Peirce-Cottler
Date Added:
09/18/2014
Designing a Medical Device to Extract Foreign Bodies from the Ear
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the engineering design process by following the steps, from problem identification to designing a device and evaluating its efficacy and areas for improvement. A quick story at the beginning of the activity sets up the challenge: A small child put a pebble in his ear and we don't know how to get it out! Acting as biomedical engineers, students are asked to design a device to remove it. Each student pair is provided with a model ear canal and a variety of classroom materials. A worksheet guides the design process as students create devices and attempt to extract pebbles from the ear canal.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Biomedical Engineering,
Derek Harbin
Krista Warner
Leyf Starling
Shayn Peirce-Cottler
Date Added:
09/18/2014
Designing a Package that Works
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams act as engineers and brainstorm, design, create and test their ideas for packaging to protect a raw egg shipped in a 9 x 12-in envelope. They follow the steps of the engineering design process and aim for a successful solution with no breakage, low weight, minimal materials and recyled/reused materials. Students come to understand the multi-faceted engineering considerations associated with the packaging of items to preserve, market and safely transport goods.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Making the Connection, Women in Engineering Programs and Advocates Network (WEPAN) ,
Martha Cyr, Worcester Polytechnic Institute
Date Added:
09/18/2014
Designing a Paper Bridge
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, cast members make a bridge from a single piece of paper. Will it be strong enough to hold a hundred pennies?

Subject:
Career and Technical Education
Chemistry
Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/22/2004
Designing a Robotic Surgical Device
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, which must fit through small incisions, inspect the organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. Note: This activity is the core design project for a semester-long, three-credit high school engineering course. Refer to the associated curricular unit for preparatory lessons and activities.

Subject:
Career and Technical Education
Health Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Benjamin S. Terry, Brandi N. Briggs, Stephanie Rivale, Denise W. Carlson
Integrated Teaching and Learning Program,
Date Added:
09/18/2014
Designing a Spectroscopy Mission
Read the Fine Print
Rating
0.0 stars

This is a math-science integrated unit about spectrographs. Learners will find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, the students will build their own spectrographs in groups and research and design a ground or space-based mission using their creation. After the project is complete, student groups will present to the class on their trials, tribulations, and findings during this process. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System.

Subject:
Career and Technical Education
Chemistry
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Full Course
Lesson Plan
Unit of Study
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/13/2017
Designing a Spectroscopy Mission
Read the Fine Print
Educational Use
Rating
0.0 stars

Students find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, student teams design and build their own spectrographs, researching and designing a ground- or space-based mission using their creation. At project end, teams present their findings to the class, as if they were making an engineering conference presentation. Student must have completed the associated Building a Fancy Spectrograph activity before attempting this activity.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Laboratory for Atmospheric and Space Physics (LASP),
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder
Date Added:
10/14/2015
Designing a Sustainable Guest Village in the Saguaro National Park
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to design a permanent guest village within the Saguaro National Park in Arizona. The design must provide a true desert experience to visitors while emphasizing sustainable design, protection of the natural environment, and energy and resource conservation. To successfully address and respond to this challenge, students must acquire an understanding of desert ecology, environmental limiting factors, species adaptations and resource utilization. Following theintroduction, students generate ideas and consider the knowledge required to complete the challenge. The lectures and activities that follow serve to develop this level of comprehension. To introduce the concepts of healthy ecosystems, biomimetics and the importance of sustainable environmental design, students watch three video clips of experts. These clips provide direction for student research and challenge design solutions.

Subject:
Career and Technical Education
Ecology
Environmental Science
Forestry and Agriculture
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Megan Johnston
TeachEngineering.org
VU Bioengineering RET Program,
Wendy J. Holmgren
Date Added:
09/18/2014
Designing a Thermostat
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate circuits and their components by building a basic thermostat. They learn why key parts are necessary for the circuit to function, and alter the circuit to optimize the thermostat temperature range. They also gain an awareness of how electrical engineers design circuits for the countless electronic products in our world.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
Designing a Winning Guest Village in the Saguaro National Park
Read the Fine Print
Educational Use
Rating
0.0 stars

The Challenge Question of the Legacy Cycle draws the student into considering the engineering ingenuity of nature. It will force him to analyze, appreciate and understand the wisdom of these designs as the student team focuses on meeting each of the challenge's requirements. The student is asked, with his team members, to envision a sustainable design for a future guest village within the Saguaro National Park, outside of Tucson, Arizona. What issues need to be addressed to support the comforts of park visitors without compromising the natural resources or endangering the endemic species of the area? A deeper scope of application will reveal extensions of this design in the incorporation of urban planning and systems design. It also strengthens the concept of manufacturing and building without producing waste or pollution.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amber Spolarich
Megan Johnston
VU Bioengineering RET Program,
Wendy J. Holmgren
Date Added:
09/18/2014
Desirable Breeding Traits in Cattle
Read the Fine Print
Educational Use
Rating
0.0 stars

This video from Nature offers a description of desirable traits in beef and dairy cattle.

Subject:
Biology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
Canon
Corporation for Public Broadcasting
SC Johnson
WNET
Date Added:
11/11/2008
Destination Outer Space
Read the Fine Print
Educational Use
Rating
0.0 stars

Students acquire a basic understanding of the science and engineering of space travel as well as a brief history of space exploration. They learn about the scientists and engineers who made space travel possible and briefly examine some famous space missions. Finally, they learn the basics of rocket science (Newton's third law of motion), the main components of rockets and the U.S. space shuttle, and how engineers are involved in creating and launching spacecraft.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Denise W. Carlson
Geoff Hill
Integrated Teaching and Learning Program,
Jessica Butterfield
Jessica Todd
Sam Semakula
TeachEngineering.org
Date Added:
09/18/2014
Detail Drawings: Communicating with Engineers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to detail drawings and the importance of clearly documenting and communicating their designs. They are introduced to the American National Standards Institute (ANSI) Y14.5 standard, which controls how engineers communicate and archive design information. They are introduced to standard paper sizes and drawing view conventions, which are major components of the Y14.5 standard.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry, Stephanie Rivale, Denise W. Carlson
Integrated Teaching and Learning Program,
TeachEngineering.org
Date Added:
09/18/2014
Detecting Breast Cancer
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the unit challenge: To develop a painless means of identifying cancerous tumors. Solving the challenge depends on an understanding of the properties of stress and strain. After learning the challenge question, students generate ideas and consider the knowledge required to solve the challenge. Then they read an expert's opinion on ultrasound imaging and the potentials for detecting cancerous tumors. This interview helps to direct student research and learning towards finding a solution.

Subject:
Career and Technical Education
Health Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Luke Diamond
Meghan Murphy
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
Determination of Chlorophyll in Olive Oil Using the Vernier Spectrometer
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students will investigate how much chlorophyll is in olive oil using a Varnier Spectrometer. Students will measure and analyze the visible light absorbance spectra of three standard olive oils obtained from any supermarket: extra virgin, regular, and light.

Subject:
Biology
Botany
Career and Technical Education
Life Science
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
David Reierson
Date Added:
02/10/2023
Determining Concentration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students quantify the percent of light reflected from solutions containing varying concentrations of red dye using LEGO© MINDSTORMS© NXT bricks and light sensors. They begin by analyzing a set of standard solutions with known concentrations of food coloring, and plot data to graphically determine the relationship between percent reflected light and dye concentration. Then they identify dye concentrations for two unknown solution samples based on how much light they reflect. Students gain an understanding of light scattering applications and how to determine properties of unknown samples based on a set of standard samples.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
AMPS GK-12 Program,
Jasmin Hume
Date Added:
09/18/2014
Development of Inventions and Creative Ideas, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Role of the engineer as patent expert and as technical witness in court and patent interference and related proceedings. Rights and obligations of engineers in connection with educational institutions, government, and large and small businesses. Various manners of transplanting inventions into business operations, including development of New England and other US electronics and biotech industries and their different types of institutions. American systems of incentive to creativity apart from the patent laws in the atomic energy and space fields. For graduate students only; others see 6.901.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Rines, Robert
Date Added:
01/01/2008