This course is designed to provide both undergraduate and graduate students with …
This course is designed to provide both undergraduate and graduate students with a fundamental understanding of human factors that must be taken into account in the design and engineering of complex aviation and space systems. The primary focus is the derivation of human engineering design criteria from sensory, motor, and cognitive sources to include principles of displays, controls and ergonomics, manual control, the nature of human error, basic experimental design, and human-computer interaction in supervisory control settings. Undergraduate students will demonstrate proficiency through aviation accident case presentations, quizzes, homework assignments, and hands-on projects. Graduate students will complete all the undergraduate assignments; however, they are expected to complete a research-oriented project with a final written report and an oral presentation.
Maker Faire participants collaborate in ISKME's Design Lab, using digital stories and …
Maker Faire participants collaborate in ISKME's Design Lab, using digital stories and salvaged materials to design an innovative school of the future. The Design Lab features Makers Mauro ffortisimo Di Nucci's deconstructed piano and INKA Biospheric Systems' Vertical Garden; as well as Student and Teacher project examples that integrate art, science, sustainability, and green design inspire the creation of shareable open-source learning resources. This wiki page showcases photos and video from the Design Lab, open educational resources for teachers, and a step by step guide through the design process.
"The course is designed to provide a better understanding of the built …
"The course is designed to provide a better understanding of the built environment, globalization, the current financial crisis and the impact of these factors on the rapidly changing and evolving international architecture, engineering, construction fields. We will, hopefully, obtain a better understanding of how these forces of globalization and the current financial crisis are having an impact on the built environment and how they will affect firms and your future career opportunities. We will also identify, review and discuss best practices and lessons that can be learned from recent events. We will explore the "international built environment" in detail, examining how it functions and asking what are the managerial, entrepreneurial and professional opportunities, challenges and risks in it, especially growing crossover and multi-disciplinary opportunities; and we will seek to understand what makes this "built environment" so different from other sectors."
This ITS ePrimer provides transportation professionals with fundamental concepts and practices related …
This ITS ePrimer provides transportation professionals with fundamental concepts and practices related to ITS technologies. This resource can help practicing professionals and students better understand how ITS is integrated into the planning, design, deployment, and operations of surface transportation systems. The ePrimer is both a stand-alone reference document for the practitioner as well as a text for education and training programs.
The applets in this Interactive Geometry Dictionary (IGD) will allow students an …
The applets in this Interactive Geometry Dictionary (IGD) will allow students an opportunity to explore finding the area of some common shapes. The applets demonstrate how to find the area of a triangle using the area of a parallelogram, which in turn can be found using the area of a rectangle. This tool also supports the lesson "What's My Area" cataloged separately.
This resource contains a series of activities, lessons and ideas for introducing …
This resource contains a series of activities, lessons and ideas for introducing Elementary students to the design thinking process. The author includes connections to Empathy and the implications of designing things with others in mind.
This course presents the fundamentals of object-oriented software design and development, computational …
This course presents the fundamentals of object-oriented software design and development, computational methods and sensing for engineering, and scientific and managerial applications. It cover topics, including design of classes, inheritance, graphical user interfaces, numerical methods, streams, threads, sensors, and data structures. Students use Java programming language to complete weekly software assignments. How is 1.00 different from other intro programming courses offered at MIT? 1.00 is a first course in programming. It assumes no prior experience, and it focuses on the use of computation to solve problems in engineering, science and management. The audience for 1.00 is non-computer science majors. 1.00 does not focus on writing compilers or parsers or computing tools where the computer is the system; it focuses on engineering problems where the computer is part of the system, or is used to model a physical or logical system. 1.00 teaches the Java programming language, and it focuses on the design and development of object-oriented software for technical problems. 1.00 is taught in an active learning style. Lecture segments alternating with laboratory exercises are used in every class to allow students to put concepts into practice immediately; this teaching style generates questions and feedback, and allows the teaching staff and students to interact when concepts are first introduced to ensure that core ideas are understood. Like many MIT classes, 1.00 has weekly assignments, which are programs based on actual engineering, science or management applications. The weekly assignments build on the class material from the previous week, and require students to put the concepts taught in the small in-class labs into a larger program that uses multiple elements of Java together.
An introduction to several fundamental ideas in electrical engineering and computer science, …
An introduction to several fundamental ideas in electrical engineering and computer science, using digital communication systems as the vehicle. The three parts of the course - bits, signals, and packets - cover three corresponding layers of abstraction that form the basis of communication systems like the Internet. The course teaches ideas that are useful in other parts of EECS: abstraction, probabilistic analysis, superposition, time and frequency-domain representations, system design principles and trade-offs, and centralized and distributed algorithms. The course emphasizes connections between theoretical concepts and practice using programming tasks and some experiments with real-world communication channels.
During this course, we will be exploring basic questions of architecture through …
During this course, we will be exploring basic questions of architecture through several short design exercises. Working with many different media, students will discover the interrelationship of architecture and its related disciplines, such as structures, sustainability, architectural history and the visual arts. Each problem will focus on one of these disciplines and one exploration and presentation technique.
This is an activity about magnetism. Learners will experiment using horseshoe and …
This is an activity about magnetism. Learners will experiment using horseshoe and bar magnets along with various materials in order to identify the effects of magnets on each other and on other materials. This is the third activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link.
This subject provides an introduction to modeling and simulation, covering continuum methods, …
This subject provides an introduction to modeling and simulation, covering continuum methods, atomistic and molecular simulation, and quantum mechanics. Hands-on training is provided in the fundamentals and applications of these methods to key engineering problems. The lectures provide exposure to areas of application based on the scientific exploitation of the power of computation. We use web based applets for simulations, thus extensive programming skills are not required.
This course presents aerospace propulsive devices as systems, with functional requirements and …
This course presents aerospace propulsive devices as systems, with functional requirements and engineering and environmental limitations along with requirements and limitations that constrain design choices. Both air-breathing and rocket engines are covered, at a level which enables rational integration of the propulsive system into an overall vehicle design. Mission analysis, fundamental performance relations, and exemplary design solutions are presented.
This course provides an overview of robot mechanisms, dynamics, and intelligent controls. …
This course provides an overview of robot mechanisms, dynamics, and intelligent controls. Topics include planar and spatial kinematics, and motion planning; mechanism design for manipulators and mobile robots, multi-rigid-body dynamics, 3D graphic simulation; control design, actuators, and sensors; wireless networking, task modeling, human-machine interface, and embedded software. Weekly laboratories provide experience with servo drives, real-time control, and embedded software. Students will design and fabricate working robotic systems in a group-based term project.
This class assesses current and potential future energy systems, covering resources, extraction, …
This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the Graduate / Professional version, Sustainable Energy, complete additional assignments.
Introduction to systems thinking and system dynamics modeling applied to strategy, organizational …
Introduction to systems thinking and system dynamics modeling applied to strategy, organizational change, and policy design. Students use simulation models, management flight simulators, and case studies to develop conceptual and modeling skills for the design and management of high-performance organizations in a dynamic world.
Frameworks and Models for Technology and Policy students explore perspectives in the …
Frameworks and Models for Technology and Policy students explore perspectives in the policy process -- agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises for Technology and Policy students include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership. This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership.
This activity is designed to provide qualitative understanding of the Work-Energy Theorem. …
This activity is designed to provide qualitative understanding of the Work-Energy Theorem. Students are expected to have read introductory material regarding the theorem, and are tested on this with a short online quiz prior to class. After a brief discussion a "warm-up" demonstration is conducted with student participation. A question is then posed regarding the height a "Hopper Popper" will reach if launched from a thumb instead of a hard flat surface. After initial responses are presented, discussion groups are formed to achieve consensus and provide justification of conclusions. This is followed by a confirming demonstration with surprising results.
Students are introduced to the basic principles behind engineering and the types …
Students are introduced to the basic principles behind engineering and the types of engineering while learning about a popular topic - the Olympics. The involvement of engineering in modern sports is amazing and pervasive. Students learn about the techniques of engineering problem solving, including brainstorming and the engineering design process. The importance of thinking out of the box is stressed through a discussion of the engineering required to build grand, often complex, Olympic event centers. Students review what they know about kinetic and potential energy as they investigate the design of energy-absorbing materials, relating this to the design of lighter, faster and stronger sporting equipment to improve athletic performance and protect athletes. Students consider states of matter and material properties as they see the role of chemical engineering in the Olympics. Students also learn about transportation and the environment, the relationship between architecture and environment, and the relationship between architecture and engineering.
In this lesson plan from Illuminations, students use relationship rods to explore …
In this lesson plan from Illuminations, students use relationship rods to explore fraction relationships. Relationship rods range in length from one to ten centimeters, and each rod is a different color. An activity sheet with solutions, questions for students, assessment options, and suggested extension activities are included. The lesson plan is part of a five lesson plan unit, Fun with Fractions, which is cataloged separately.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.