In this lesson designed to enhance literacy skills, students examine energy forms …
In this lesson designed to enhance literacy skills, students examine energy forms in moving objects and discover how changes from one form to another move cars through a roller coaster ride.
On NOVA, a team of carpenters, timber framers, engineers, and historians recreate …
On NOVA, a team of carpenters, timber framers, engineers, and historians recreate a medieval throwing machine called a trebuchet. This adapted video segment explores how understanding energy transfer informs their design.
Introduces the basics of energy from how we measure it, to how …
Introduces the basics of energy from how we measure it, to how it is regulated and priced, to how you can engage in exciting new opportunities for energy efficiency, green architecture, and renewable energy. Recorded in May 2008 by Penn State University for the Local Development Districts of Pennsylvania's Energy Partnership, in Milton, PA.
Our world runs on energy - without it, things come to a …
Our world runs on energy - without it, things come to a screeching halt, as the recent hurricanes have shown. Ever stop to wonder what our energy future is? What are our options for energy, and what are the associated economic and climatic implications? In \Energy and the Environment\" we explore these questions, which together represent one of the great challenges of our time - providing energy for high quality of life and economic growth while avoiding dangerous climate change. This course takes an optimistic view of our prospects, and we'll see how shifting to renewable energy can lead to a viable future.
This activity utilizes hands on learning with the conservation of energy with …
This activity utilizes hands on learning with the conservation of energy with the inclusion of elastic potential energy. Students use pogo sticks to experience the elastic potential energy and its conversion to gravitational potential energy.
Students are introduced to sound energy concepts and how engineers use sound …
Students are introduced to sound energy concepts and how engineers use sound energy. Through hands-on activities and demonstrations, students examine how we know sound exists by listening to and seeing sound waves. They learn to describe sound in terms of its pitch, volume and frequency. They explore how sound waves move through liquids, solids and gases. They also identify the different pitches and frequencies, and create high- and low-pitch sound waves.
This activity utilizes hands-on learning with the conservation of energy and the …
This activity utilizes hands-on learning with the conservation of energy and the interaction of friction. Students use a roller coaster track and collect position data. The students then calculate velocity, and energy data. After the lab, students relate the conversion of potential and kinetic energy to the conversion of energy used in a hybrid car.
Students are introduced to genetic techniques such as DNA electrophoresis and imaging …
Students are introduced to genetic techniques such as DNA electrophoresis and imaging technologies used for molecular and DNA structure visualization. In the field of molecular biology and genetics, biomedical engineering plays an increasing role in the development of new medical treatments and discoveries. Engineering applications of nanotechnology such as lab-on-a-chip and deoxyribonucleic acid (DNA) microarrays are used to study the human genome and decode the complex interactions involved in genetic processes.
Under the "The Science Behind Harry Potter" theme, a succession of diverse …
Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.
This course covers the major topics of mechanics, including momentum and energy …
This course covers the major topics of mechanics, including momentum and energy conservation, kinematics, NewtonŰŞs laws and equilibrium. The major emphasis is to develop critical analysis, problem solving and scientific reasoning skills by considering numerous different systems and interactions, solving problems and discussion. It uses a systematic approach based on modeling systems by application of basic physics principles, making assumptions, utilizing multiple representations (not just mathematical) in order to become proficient at problem solving. Lab work is required and is designed to help students develop a questioning approach to physical situations, distinguishing the significant behaviors from the less significant behaviors of a system under study.Login: guest_oclPassword: ocl
Students learn about applied forces as they create pop-up-books the art of …
Students learn about applied forces as they create pop-up-books the art of paper engineering. They also learn the basic steps of the engineering design process.
Students use simple materials to design an open spectrograph so they can …
Students use simple materials to design an open spectrograph so they can calculate the angle light is bent when it passes through a holographic diffraction grating. A holographic diffraction grating acts like a prism, showing the visual components of light. After finding the desired angles, students use what they have learned to design their own spectrograph enclosure.
This course is intended to understand the engineering design of nuclear power …
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, thermodynamics, fluid flow and heat transfer. This course includes the following: Reactor designs, Thermal analysis of nuclear fuel, Reactor coolant flow and heat transfer, Power conversion cycles, Nuclear safety and Reactor dynamic behavior.
The Environment and the Earth class at the University of South Carolina …
The Environment and the Earth class at the University of South Carolina participated in a campus environmental service-learning project where students collected data lighting, water fixtures, recycling bins, and trash in five academic buildings.
Compiled by Suzanne Savanick, Science Education Resource Center. Based on Bixby et al. (2003), Ecology on Campus: Service Learning in Introductory Environmental Courses, Journal of College Science Teaching, v. 32, n.5, o, 327-331.
This course is designed to be a survey of the various subdisciplines …
This course is designed to be a survey of the various subdisciplines of geophysics (geodesy, gravity, geomagnetism, seismology, and geodynamics) and how they might relate to or be relevant for other planets. No prior background in Earth sciences is assumed, but students should be comfortable with vector calculus, classical mechanics, and potential field theory.
Students learn that buoyancy is responsible for making boats, hot air balloons …
Students learn that buoyancy is responsible for making boats, hot air balloons and weather balloons float. They calculate whether or not a boat or balloon will float, and calculate the volume needed to make a balloon or boat of a certain mass float. Conduct the first day of the associated activity before conducting this lesson.
Students explore material properties in hands-on and visually evident ways via the …
Students explore material properties in hands-on and visually evident ways via the Archimedes' principle. First, they design and conduct an experiment to calculate densities of various materials and present their findings to the class. Using this information, they identify an unknown material based on its density. Then, groups explore buoyant forces. They measure displacement needed for various materials to float on water and construct the equation for buoyancy. Using this equation, they calculate the numerical solution for a boat hull using given design parameters.
In this NASA video, scientists describe how the Extreme Ultraviolet Variability Experiment …
In this NASA video, scientists describe how the Extreme Ultraviolet Variability Experiment will sample and track the Sun's ultraviolet irradiance, providing a detailed time sequence of extreme ultraviolet output -- data that can provide advance warning for potentially disruptive energy bursts.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.