Updating search results...

Search Resources

9 Results

View
Selected filters:
  • transcription
Analysis of Biological Networks (BE.440), Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Essigmann, John
Sasisekharan, Ram
Date Added:
01/01/2004
Cell Biology: Structure and Functions of the Nucleus, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sharp, Phillip
Young, Richard
Date Added:
01/01/2010
Computational Functional Genomics, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Study and discussion of computational approaches and algorithms for contemporary problems in functional genomics. Topics include DNA chip design, experimental data normalization, expression data representation standards, proteomics, gene clustering, self-organizing maps, Boolean networks, statistical graph models, Bayesian network models, continuous dynamic models, statistical metrics for model validation, model elaboration, experiment planning, and the computational complexity of functional genomics problems.

Subject:
Biology
Computer Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gifford, David
Jaakkola, Tommi Sakari
Date Added:
01/01/2005
Gene Expression - The Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Express yourself through your genes! See if you can generate and collect three types of protein, then move on to explore the factors that affect protein synthesis in a cell.

Subject:
Genetics
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
George Emanuel
John Blanco
Kathy Perkins
Mike Klymkowsky
PhET Interactive Simulations
Tom Perkins
Date Added:
08/20/2012
Geniverse - genetics simulation
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

From The Concord Consortium website.
Meet Geniverse: online, interactive genetics software for high school and other students. Geniverse is a game-like environment that supports experimentation, critical thinking and writing about genetics. Geniverse is designed for teachers to play an active role in the classroom by guiding students to understand and make connections to real-world genetics. Geniverse shares a pedigree with past Concord Consortium projects reaching back to the pioneering GenScope software and is built upon the same compelling premise students explore genetics by breeding and studying virtual dragons.
 
A captivating narrative creates an authentic context for students to dive into genetics. Students use a virtual model species (drakes) to explore the fundamental mechanisms of heredity and genetic diseases and then get a taste of careers in genetics. While following a courageous protagonist on a quest to heal a beloved dragon, students generate their own experimental data as they complete Geniverse challenges. They "publish" their findings using the scientific practice of argumentation, supporting their claims with evidence and reasoning, first in writing, and then in class discussions.
 
For instructions on getting started with Geniverse along with printable teacher guides, lesson plans and student handouts, visit Geniversity, our teacher resource website!
 From <https://concord.org/stem-resources/geniverse>

Subject:
Biology
Life Science
Material Type:
Formative Assessment
Game
Lesson Plan
Simulation
Teaching/Learning Strategy
Provider:
The Concord Consortium
Date Added:
06/21/2016
Introduction to Biology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2004
Introduction to Genetic Engineering and Its Applications
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers apply their understanding of DNA to manipulate specific genes to produce desired traits, and how engineers have used this practice to address current problems facing humanity. They learn what genetic engineering means and examples of its applications, as well as moral and ethical problems related to its implementation. Students fill out a flow chart to list the methods to modify genes to create GMOs and example applications of bacteria, plant and animal GMOs.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Matthew Zelisko, Kimberly Anderson
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
SEPUP Protein Synthesis
Restricted Use
Copyright Restricted
Rating
0.0 stars

Simulation that shows the process of transcription and translation.  Transcription is shown, while translation requires stundents to drag each anticodon to match the proper codon.

Subject:
Biology
Life Science
Material Type:
Interactive
Provider:
Science Education for Public Understanding Program
Date Added:
06/16/2015
WUHS Biology Packets - DNA & Proteins Unit
Unrestricted Use
CC BY
Rating
0.0 stars

Using three-dimensional scaffolds, these materials address the following topics:  - Structure & Function of DNA. - DNA Replication via Polymerase. - Transcription & Translation.  - Codons & Amino Acids Sequences. Each packet is broken into five parts - data dive, core ideas, investigations, asssessments, and life connections. Formative assessments and checkpoints are embedded throughout each packet. The final packet prepares students for a summative assessment, with a provided practice assessment. Implementation instructions are embedded for each component of each packet. PDFs are included as attachments (in case the file formats are altered by this system). 

Subject:
Life Science
Material Type:
Activity/Lab
Assessment Item
Formative Assessment
Homework/Assignment
Lecture
Lecture Notes
Lesson
Module
Reading
Student Guide
Author:
Craig Kohn
Date Added:
02/22/2024