The purpose of this activity is to bring together the students' knowledge …
The purpose of this activity is to bring together the students' knowledge of engineering and airplanes and the creation of a glider model to determine how each modification affects the flight. The students will use a design procedure whereby one variable is changed and all the others are kept constant.
Rockets need a lot of thrust to get into space. In this …
Rockets need a lot of thrust to get into space. In this lesson, students learn how rocket thrust is generated with propellant. The two types of propellants are discussed and relation to their use on rockets is investigated. Students learn why engineers need to know the different properties of propellants.
Students acquire a basic understanding of the science and engineering of space …
Students acquire a basic understanding of the science and engineering of space travel as well as a brief history of space exploration. They learn about the scientists and engineers who made space travel possible and briefly examine some famous space missions. Finally, they learn the basics of rocket science (Newton's third law of motion), the main components of rockets and the U.S. space shuttle, and how engineers are involved in creating and launching spacecraft.
During the associated lesson, students have learned about Newton's three laws of …
During the associated lesson, students have learned about Newton's three laws of motion and free-body diagrams and have identified the forces of thrust, drag and gravity. As students begin to understand the physics behind thrust, drag and gravity and how these relate these to Newton's three laws of motion, groups assemble and launch the rockets that they designed in the associated lesson. The height of the rockets, after constructed and launched, are measured and compared to the theoretical values calculated during the rocket lesson. Effective teamwork and attention to detail is key for successful launches.
The purpose of this lesson is to teach the students about how …
The purpose of this lesson is to teach the students about how a spacecraft gets from the surface of the Earth to Mars. The lesson first investigates rockets and how they are able to get us into space. Finally, the nature of an orbit is discussed as well as how orbits enable us to get from planet to planet specifically from Earth to Mars.
Students apply their mathematics and team building skills to explore the concept …
Students apply their mathematics and team building skills to explore the concept of rocketry. They learn about design issues faced by aerospace engineers when trying to launch rocketships or satellites in order to land them safely in the ocean, for example. Students learn the value of designing within constraints while brainstorming a rocketry system using provided materials and a specified project budget. Throughout the design process, teamwork is emphasized since the most successful launches occur when groups work effectively to generate creative ideas and solutions to the rocket challenge.
This course develops the theory and design of hydrofoil sections, including lifting …
This course develops the theory and design of hydrofoil sections, including lifting and thickness problems for sub-cavitating sections, unsteady flow problems, and computer-aided design of low drag cavitation-free sections. It also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, control surface, propeller and wind turbine rotor design. Other topics include computer-aided design of wake adapted propellers, steady and unsteady propeller thrust and torque; performance analysis and design of wind turbine rotors in steady and stochastic wind; and numerical principles of vortex lattice and lifting surface panel methods. Projects illustrate the development of computational methods for lifting, propeller and wind turbine flows, and use of state-of-the-art simulation methods for lifting, propulsion and wind turbine applications.
While building and testing model rockets fueled by antacid tablets, students are …
While building and testing model rockets fueled by antacid tablets, students are introduced to the basic physics concepts on how rockets work. Students revise and improve their initial designs. Note: This activity is similar to the elementary-level film canister rockets activity, but adapted for middle school students.
In this lesson, students discover the entire process that goes into designing …
In this lesson, students discover the entire process that goes into designing a rocket for any customer. In prior lessons, students learned how rockets work, but now they learn what real-world decisions engineers have to make when designing and building a rocket. They learn about important factors such as supplies, ethics, deadlines and budgets. Also, students learn about the Engineering process, and recognize that the first design is almost never the final design. Re-Engineering is a critical step in creating a rocket.
Students teams each assemble a wing component of a lifter with the …
Students teams each assemble a wing component of a lifter with the goal to test the lifter wing and measure the force exerted when high voltage is applied to it. After an introduction to torque and its use to measure force, students calculate the change in the torque when a high voltage is applied to the wing portion of the lifter using a fulcrum. Once a group has assembled its wing portion, the teacher tests it with a high-voltage power supply, marking the change in the balance so that students can calculate the force. Then groups adjust the gap between the electrodes and re-measure the force. Groups each repeat this process three times, which allows students to estimate the magnitude of the force as a function of the gap between the electrodes.
In this math meets engineering activity, learners make paper airplanes and explore …
In this math meets engineering activity, learners make paper airplanes and explore attributes related to increasing flight distances. Each learner collects data from three flights of the airplane and finds the median distance. Learners then collect, organize, display, and interpret the median distances for the group in a stem-and-leaf plot. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.
Can you avoid the boulder field and land safely, just before your …
Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.
Students revisit Bernoulli's Principle (Lesson 1 of the Airplanes unit) and learn …
Students revisit Bernoulli's Principle (Lesson 1 of the Airplanes unit) and learn how engineers use this principle to design airplane wings. Airplane wings create lift by changing the pressure of the air around it. This is the first of four lessons exploring the four key forces in flight: lift, weight, thrust and drag.
In this lesson, students will study how propellers and jet turbines generate …
In this lesson, students will study how propellers and jet turbines generate thrust. This lesson focuses on Isaac Newton's 3rd Law of Motion, which states that for every action there is an equal and opposite reaction.
Students design and build paper rockets around film canisters, which serve as …
Students design and build paper rockets around film canisters, which serve as engines. An antacid tablet and water are put into each canister, reacting to form carbon dioxide gas, and acting as the pop rocket's propellant. With the lid snapped on, the continuous creation of gas causes pressure to build up until the lid pops off, sending the rocket into the air. The pop rockets demonstrate Newton's third law of motion: for every action, there is an equal and opposite reaction.
In this math meets physics game, learners pretend they are pilots of …
In this math meets physics game, learners pretend they are pilots of rescue helicopters and must fly their helicopters to the top of a mountain to rescue lost hikers. Learners first explore the four forces of flight: lift, drag, thrust, and weight. Before playing the game, learners conduct a probability experiment with spinners and record their results in tally tables and bar graphs. They then use their findings to select spinners with the greatest probability of helping them win the game. In a portion of the game, learners use ordered pairs to plot points on the coordinate plane to show their flight path.
One of the exciting challenges for engineers is the idea of exploration. …
One of the exciting challenges for engineers is the idea of exploration. This lesson looks more closely at Spaceman Rohan, Spacewoman Tess, their daughter Maya, and their challenges with getting to space, setting up satellites, and exploring uncharted waters via a canoe. This lesson reinforces rockets as a vehicle that helps us explore outside the Earth's atmosphere (i.e., to move without air) by using the principles of Newton's third law of motion. Also, the ideas of thrust, control and weight all principles that engineers deal with when building a rocket are introduced.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.