Boundary layers as rational approximations to the solutions of exact equations of …
Boundary layers as rational approximations to the solutions of exact equations of fluid motion. Physical parameters influencing laminar and turbulent aerodynamic flows and transition. Effects of compressibility, heat conduction, and frame rotation. Influence of boundary layers on outer potential flow and associated stall and drag mechanisms. Numerical solution techniques and exercises. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.
In this activity, students will estimate the height of our Commons (flagpole, …
In this activity, students will estimate the height of our Commons (flagpole, building, etc) using multiple methods.
Note: My students used homemade clinometers (protractor, string, weight). In the past, when students used a clinometer app we did not get as accurate results.
In this primary grades Illuminations lesson, students identify figures on a football …
In this primary grades Illuminations lesson, students identify figures on a football field. They look for both congruent and similar figures, and they consider figures that are the same but that occur in a different orientation because of translation, rotation, or reflection. The lesson includes a student worksheet and discussion questions.
Advances in cognitive science have resolved, clarified, and sometimes complicated some of …
Advances in cognitive science have resolved, clarified, and sometimes complicated some of the great questions of Western philosophy: what is the structure of the world and how do we come to know it; does everyone represent the world the same way; what is the best way for us to act in the world. Specific topics include color, objects, number, categories, similarity, inductive inference, space, time, causality, reasoning, decision-making, morality and consciousness. Readings and discussion include a brief philosophical history of each topic and focus on advances in cognitive and developmental psychology, computation, neuroscience, and related fields. At least one subject in cognitive science, psychology, philosophy, linguistics, or artificial intelligence is required. An additional project is required for graduate credit.
Using this tool, students build these classic fractals: the Koch snowflake, a …
Using this tool, students build these classic fractals: the Koch snowflake, a fractal tree, a reduced square, and the Sierpinksi triangle. As these shapes grow and change using an iterative process, students can observe patterns in the images created and in the table of values as the fractals progress through several stages.
This module brings together the ideas of similarity and congruence and the …
This module brings together the ideas of similarity and congruence and the properties of length, area, and geometric constructions studied throughout the year. It also includes the specific properties of triangles, special quadrilaterals, parallel lines and transversals, and rigid motions established and built upon throughout this mathematical story. This module's focus is on the possible geometric relationships between a pair of intersecting lines and a circle drawn on the page.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
In Module 3, students learn about dilation and similarity and apply that …
In Module 3, students learn about dilation and similarity and apply that knowledge to a proof of the Pythagorean Theorem based on the Angle-Angle criterion for similar triangles. The module begins with the definition of dilation, properties of dilations, and compositions of dilations. One overarching goal of this module is to replace the common idea of same shape, different sizes with a definition of similarity that can be applied to geometric shapes that are not polygons, such as ellipses and circles.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
This Cumulative Assessment Rubric is used in conjunction with the Illustrative Mathematics …
This Cumulative Assessment Rubric is used in conjunction with the Illustrative Mathematics Curriculum. It breaks down each question by identifying the Essential Standard associated and then defining what an Advanced, Proficient, Basic or Below Basic student response would entail. This rubric can then be utilized for students to track progress towards proficiency on each of the grade level standards.
This Cumulative Assessment is used in conjunction with the Illustrative Mathematics Curriculum …
This Cumulative Assessment is used in conjunction with the Illustrative Mathematics Curriculum and the Unit 4, 7, & 8 Cumulative Assessment Rubric. It is broken down identifying the Essential Standard associated. This assessment should be utilized with the uploaded rubric to track progress towards proficiency on each of the grade level standards.
In this enrichment activity, students will create the Sierpinski Triangle using GeoGebra …
In this enrichment activity, students will create the Sierpinski Triangle using GeoGebra and then answer some discovery questions related to fractals and pattern / equation finding.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En el módulo 3, los estudiantes aprenden sobre la dilatación y la similitud y aplican ese conocimiento a una prueba del teorema de Pitagorean basado en el criterio de ángulo de ángulo para triángulos similares. El módulo comienza con la definición de dilatación, propiedades de las dilataciones y composiciones de dilaciones. Un objetivo general de este módulo es reemplazar la idea común de la misma forma, diferentes tamaños con una definición de similitud que se puede aplicar a formas geométricas que no son polígonos, como elipses y círculos.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In Module 3, students learn about dilation and similarity and apply that knowledge to a proof of the Pythagorean Theorem based on the Angle-Angle criterion for similar triangles. The module begins with the definition of dilation, properties of dilations, and compositions of dilations. One overarching goal of this module is to replace the common idea of same shape, different sizes with a definition of similarity that can be applied to geometric shapes that are not polygons, such as ellipses and circles.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
Este módulo reúne las ideas de similitud y congruencia y las propiedades de la longitud, el área y las construcciones geométricas estudiadas durante todo el año. También incluye las propiedades específicas de los triángulos, cuadriláteros especiales, líneas paralelas y transversales, y movimientos rígidos establecidos y construidos sobre esta historia matemática. El enfoque de este módulo está en las posibles relaciones geométricas entre un par de líneas de intersección y un círculo dibujado en la página.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: This module brings together the ideas of similarity and congruence and the properties of length, area, and geometric constructions studied throughout the year. It also includes the specific properties of triangles, special quadrilaterals, parallel lines and transversals, and rigid motions established and built upon throughout this mathematical story. This module's focus is on the possible geometric relationships between a pair of intersecting lines and a circle drawn on the page.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
"Each student creates parallelograms from square sheets of paper and connects them …
"Each student creates parallelograms from square sheets of paper and connects them to form an octagon. During the construction, students consider angle measures, segment lengths, and areas in terms of the original square" (from NCTM's Illuminations).
This activity is designed to facilitate vocabulary rich conversations about geometric transformations. …
This activity is designed to facilitate vocabulary rich conversations about geometric transformations. The students are randomly paired to play Guess Who games with transformations of shapes. Terms used may include translation, rotation, reflection, dilation, scale factor, image, and pre-image.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.