Students are introduced to the concept of simple tools and how they …
Students are introduced to the concept of simple tools and how they can make difficult or impossible tasks easier. They begin by investigating the properties of inclined planes and how implementing them can reduce the force necessary to lift objects off the ground.
During this course, we will be exploring basic questions of architecture through …
During this course, we will be exploring basic questions of architecture through several short design exercises. Working with many different media, students will discover the interrelationship of architecture and its related disciplines, such as structures, sustainability, architectural history and the visual arts. Each problem will focus on one of these disciplines and one exploration and presentation technique.
This is an activity about magnetism. Learners will experiment using horseshoe and …
This is an activity about magnetism. Learners will experiment using horseshoe and bar magnets along with various materials in order to identify the effects of magnets on each other and on other materials. This is the third activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link.
This subject provides an introduction to modeling and simulation, covering continuum methods, …
This subject provides an introduction to modeling and simulation, covering continuum methods, atomistic and molecular simulation, and quantum mechanics. Hands-on training is provided in the fundamentals and applications of these methods to key engineering problems. The lectures provide exposure to areas of application based on the scientific exploitation of the power of computation. We use web based applets for simulations, thus extensive programming skills are not required.
This seminar will provide an introductory overview for non-experts of the emerging …
This seminar will provide an introductory overview for non-experts of the emerging field of nanometer scale science and technology. The following topics will be emphasized: (1) Historical background and motivation for the study of nanometer scale phenomena; (2) Strategies for controlling the structure of matter with nanometer scale precision; (3) Size-dependent properties (e.g., electrical, optical, and magnetic) that emerge at the nanometer scale; (4) Real-world applications that utilize nanometer scale devices. If time permits, the seminar will also describe the unique challenges that educators face when teaching an interdisciplinary and constantly evolving field such as nanometer scale science and technology. Specific classroom experiences from a nanomaterials undergraduate course at Northwestern University will be shared.
This course is offered to undergraduates and introduces students to the formulation, …
This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term. This class was originally listed in Course 13 (Ocean Engineering) as 13.002J.
This course presents aerospace propulsive devices as systems, with functional requirements and …
This course presents aerospace propulsive devices as systems, with functional requirements and engineering and environmental limitations along with requirements and limitations that constrain design choices. Both air-breathing and rocket engines are covered, at a level which enables rational integration of the propulsive system into an overall vehicle design. Mission analysis, fundamental performance relations, and exemplary design solutions are presented.
This set of 10 lectures (about 11+ hours in duration) was excerpted …
This set of 10 lectures (about 11+ hours in duration) was excerpted from a three-day course developed at MIT Lincoln Laboratory to provide an understanding of radar systems concepts and technologies to military officers and DoD civilians involved in radar systems development, acquisition, and related fields. That three-day program consists of a mixture of lectures, demonstrations, laboratory sessions, and tours.
This course provides an overview of robot mechanisms, dynamics, and intelligent controls. …
This course provides an overview of robot mechanisms, dynamics, and intelligent controls. Topics include planar and spatial kinematics, and motion planning; mechanism design for manipulators and mobile robots, multi-rigid-body dynamics, 3D graphic simulation; control design, actuators, and sensors; wireless networking, task modeling, human-machine interface, and embedded software. Weekly laboratories provide experience with servo drives, real-time control, and embedded software. Students will design and fabricate working robotic systems in a group-based term project.
Most people don’t realize that manufacturing is all around them and that …
Most people don’t realize that manufacturing is all around them and that almost everything they use is manufactured. Students will be shown ores, steel billets, forged steel, and finished steel parts. Students will learn about how raw materials are mined and then transported from factory to factory in order to be turned into the products that are all around us.
Frameworks and Models for Technology and Policy students explore perspectives in the …
Frameworks and Models for Technology and Policy students explore perspectives in the policy process -- agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises for Technology and Policy students include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership. This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership.
Students are presented with examples of the types of problems that environmental …
Students are presented with examples of the types of problems that environmental engineers solve, specifically focusing on water quality issues. Topics include the importance of clean water, the scarcity of fresh water, tap water contamination sources, and ways environmental engineers treat contaminated water.
Water is essential for life on earth and of crucial importance for …
Water is essential for life on earth and of crucial importance for society. Also within our climate water plays a major role. The natural cycle of ocean to atmosphere, by precipitation back to earth and by rivers and aquifers to the oceans has a decisive impact on regional and global climate patterns.
This course will cover six main topics:
Global water cycle. In this module you will learn to explain the different processes of the global water cycle. Water systems. In this module you will learn to describe the flows of water and sand in different riverine, coastal and ocean systems. Water and climate change. In this module you will learn to identify mechanisms of climate change and you will learn to explain the interplay of climate change, sea level, clouds, rainfall and future weather. Interventions. In this module you will learn to explain why, when and which engineering interventions are needed in rivers, coast and urban environment. Water resource management. In this module you will learn to explain why water for food and water for cities are the main challenges in water management and what the possibilities and limitations of reservoirs and groundwater are to improve water availability. Challenges. In this module you will learn to explain the challenges in better understanding and adapting to the impact of climate change on water for the coming 50 years.
This activity is designed to provide qualitative understanding of the Work-Energy Theorem. …
This activity is designed to provide qualitative understanding of the Work-Energy Theorem. Students are expected to have read introductory material regarding the theorem, and are tested on this with a short online quiz prior to class. After a brief discussion a "warm-up" demonstration is conducted with student participation. A question is then posed regarding the height a "Hopper Popper" will reach if launched from a thumb instead of a hard flat surface. After initial responses are presented, discussion groups are formed to achieve consensus and provide justification of conclusions. This is followed by a confirming demonstration with surprising results.
Lectures and labs on digital logic, flipflops, PALs, counters, timing, synchronization, finite-state …
Lectures and labs on digital logic, flipflops, PALs, counters, timing, synchronization, finite-state machines, and microprogrammed systems prepare students for the design and implementation of a final project of their choice: games, music, digital filters, graphics, etc. Extensive use of VHDL for describing and implementing digital logic designs. Possible use of lab report for Phase II of the Writing Requirement. Six extra units possible via registration for 6.905 after project proposal.
Students are introduced to the basic principles behind engineering and the types …
Students are introduced to the basic principles behind engineering and the types of engineering while learning about a popular topic - the Olympics. The involvement of engineering in modern sports is amazing and pervasive. Students learn about the techniques of engineering problem solving, including brainstorming and the engineering design process. The importance of thinking out of the box is stressed through a discussion of the engineering required to build grand, often complex, Olympic event centers. Students review what they know about kinetic and potential energy as they investigate the design of energy-absorbing materials, relating this to the design of lighter, faster and stronger sporting equipment to improve athletic performance and protect athletes. Students consider states of matter and material properties as they see the role of chemical engineering in the Olympics. Students also learn about transportation and the environment, the relationship between architecture and environment, and the relationship between architecture and engineering.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.