Updating search results...

Search Resources

1169 Results

View
Selected filters:
  • Physics
Aerodynamics of Viscous Fluids, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Boundary layers as rational approximations to the solutions of exact equations of fluid motion. Physical parameters influencing laminar and turbulent aerodynamic flows and transition. Effects of compressibility, heat conduction, and frame rotation. Influence of boundary layers on outer potential flow and associated stall and drag mechanisms. Numerical solution techniques and exercises. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Merchant, Ali A.
Date Added:
01/01/2003
Aeronautics and Astronautics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental concepts and approaches of aerospace engineering, highlighted through lectures on aeronautics, astronautics, and design. MIT˘ď‹ď_s Aerospace and Aeronautics curriculum is divided into three parts: Aerospace information engineering, Aerospace systems engineering, and Aerospace vehicles engineering. Visitors to this site will find undergraduate and graduate courses to fit all three of these areas, from Exploring Sea, Space, & Earth: Fundamentals of Engineering Design to Bio-Inspired Structures

Subject:
Career and Technical Education
Chemistry
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
03/17/2011
Air Powered Mass: F=ma
Rating
0.0 stars

Students will test how an equal force impacts an object’s acceleration as its mass increases. They will make a paper car that uses wind power (air pump) to propel forward. The car will ride along a track made from straws to simulate motion in one dimension. They will repeat these steps for multiple trials while adding mass each time. By collecting and recording data, students should notice a trend, and use their data to prove Newton’s Second Law of Motion. Extensions include making adaptations to the car, or even generating an entirely new design, while comparing their results to the first design.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Author:
STEMonstrations
NASA
Date Added:
02/19/2023
Air Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Air pressure is pushing on us all the time although we do not usually notice it. In this activity, students learn about the units of pressure and get a sense of just how much air pressure is pushing on them.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Alex Conner
Geoffrey Hill
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Air Pressure, It's in the Bag
Rating
0.0 stars

This is a lesson where students are asked to create a change in air pressure using a garbage bag and a vacuum cleaner. They are then asked to create an illustration, model or concept map explaining what is happening.

Subject:
Physical Science
Physics
Material Type:
Lesson Plan
Date Added:
03/22/2024
Ampere's Law
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson begins with a demonstration introducing students to the force between two current carrying loops, comparing the attraction and repulsion between the loops to that between two magnets. After formal lecture on Ampere's law, students begin to use the concepts to calculate the magnetic field around a loop. This is applied to determine the magnetic field of a toroid, imagining a toroid as a looped solenoid.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Eric Appelt
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
Amusement Park Physis
Rating
0.0 stars

This lengthy resource includes many activities from labs to design challenges that include:
roller coastersbumper carscarouselspendulum rides
There are many connections to science concepts and some to design and build challenges as well.

Subject:
Physical Science
Physics
Material Type:
Lesson
Lesson Plan
Reference Material
Provider:
NASA
Author:
Ann Schwartz
Carla B. Rosenberg
Carol Hodanbosi
Melissa J. B. Rogers
Ph.D. Carla B. Rosenberg
Samantha Beres
Date Added:
03/28/2018
Analyzing Forces and Motion Graphs by Riding an Elevator
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an indoor lab where students will make predictions of what a force vs time and acceleration vs time graph will look like for a ride in an elevator going down and up. Students will collect data remotely using a Force Plate and accelerometer and then download the data to the computer for further analysis.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Kim Hoehne
Date Added:
02/10/2023
Analyzing the Motion of a Marble Down a Ramp
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lab activity has students rolling a marble down a ramp to study position, velocity, and acceleration. Based on a experiment performed by Galileo.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Gavin Johnson
Date Added:
02/10/2023
Android Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students prepare for the associated activity in which they investigate acceleration by collecting acceleration vs. time data using the accelerometer of a sliding Android device. Based on the experimental set-up for the activity, students form hypotheses about the acceleration of the device. Students will investigate how the force on the device changes according to Newton's Second Law. Different types of acceleration, including average, instantaneous and constant acceleration, are introduced. Acceleration and force is described mathematically and in terms of processes and applications.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
IMPART RET Program, College of Information Science & Technology,
Scott Burns, Brian Sandall
Date Added:
09/18/2014
Android Pendulums
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the motion of a simple pendulum through direct observation and data collection using Android® devices. First, student groups create pendulums that hang from the classroom ceiling, using Android smartphones or tablets as the bobs, taking advantage of their built-in accelerometers. With the Android devices loaded with the (provided) AccelDataCapture app, groups explore the periodic motion of the pendulums, changing variables (amplitude, mass, length) to see what happens, by visual observation and via the app-generated graphs. Then teams conduct formal experiments to alter one variable while keeping all other parameters constant, performing numerous trials, identifying independent/dependent variables, collecting data and using the simple pendulum equation. Through these experiments, students investigate how pendulums move and the changing forces they experience, better understanding the relationship between a pendulum's motion and its amplitude, length and mass. They analyze the data, either on paper or by importing into a spreadsheet application. As an extension, students may also develop their own algorithms in a provided App Inventor framework in order to automatically note the time of each period.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Doug Bertelsen
IMPART RET Program,
Date Added:
09/18/2014
Angular Momentum Experiment
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After using the historical development of concepts of conserved motion to develop introductory understanding, students are directed to a series of activities to gain a better understanding of momentum, conservation of momenta, angular momentum, and conservation of angular momenta.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
David Trapp
Date Added:
02/10/2023
Antimatter Matters
Read the Fine Print
Educational Use
Rating
0.0 stars

Antimatter, the charge reversed equivalent of matter, has captured the imaginations of science fiction fans for years as a perfectly efficient form of energy. While normal matter consists of atoms with negatively charged electrons orbiting positively charged nuclei, antimatter consists of positively charged positrons orbiting negatively charged anti-nuclei. When antimatter and matter meet, both substances are annihilated, creating massive amounts of energy. Instances in which antimatter is portrayed in science fiction stories (such as Star Trek) are examined, including their purposes (fuel source, weapons, alternate universes) and properties. Students compare and contrast matter and antimatter, learn how antimatter can be used as a form of energy, and consider potential engineering applications for antimatter.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Rachel Howser
TeachEngineering.org
Date Added:
09/18/2014
Applied Geometric Algebra, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Laszlo Tisza was Professor of Physics Emeritus at MIT, where he began teaching in 1941. This online publication is a reproduction the original lecture notes for the course "Applied Geometric Algebra" taught by Professor Tisza in the Spring of 1976. Over the last 100 years, the mathematical tools employed by physicists have expanded considerably, from differential calculus, vector algebra and geometry, to advanced linear algebra, tensors, Hilbert space, spinors, Group theory and many others. These sophisticated tools provide powerful machinery for describing the physical world, however, their physical interpretation is often not intuitive. These course notes represent Prof. Tisza's attempt at bringing conceptual clarity and unity to the application and interpretation of these advanced mathematical tools. In particular, there is an emphasis on the unifying role that Group theory plays in classical, relativistic, and quantum physics. Prof. Tisza revisits many elementary problems with an advanced treatment in order to help develop the geometrical intuition for the algebraic machinery that may carry over to more advanced problems. The lecture notes came to MIT OpenCourseWare by way of Samuel Gasster, '77 (Course 18), who had taken the course and kept a copy of the lecture notes for his own reference. He dedicated dozens of hours of his own time to convert the typewritten notes into LaTeX files and then publication-ready PDFs. You can read about his motivation for wanting to see these notes published in his Preface below. Professor Tisza kindly gave his permission to make these notes available on MIT OpenCourseWare.

Subject:
Algebra
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Tisza, L
Date Added:
01/01/2009
Applied Nuclear Physics, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. Binding energy and nuclear stability. Interactions of charged particles, neutrons, and gamma rays with matter. Radioactive decays. Energetics and general cross-section behavior in nuclear reactions.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Yip, Sidney
Date Added:
01/01/2006
Applied Quantum and Statistical Physics, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Elementary quantum mechanics and statistical physics. Introduces applied quantum physics. Emphasizes experimental basis for quantum mechanics. Applies Schrodinger's equation to the free particle, tunneling, the harmonic oscillator, and hydrogen atom. Variational methods. Elementary statistical physics; Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions. Simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and more.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Orlando, Terry
Date Added:
01/01/2006
Archimedes' Principle, Pascal's Law and Bernoulli's Principle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to Pascal's law, Archimedes' principle and Bernoulli's principle. Fundamental definitions, equations, practice problems and engineering applications are supplied. A PowerPoint® presentation, practice problems and grading rubric are provided.

Subject:
Career and Technical Education
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
TeachEngineering.org
Date Added:
09/18/2014
Architects and Engineers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the interface between architecture and engineering. In the associated hands-on activity, students act as both architects and engineers by designing and building a small parking garage.

Subject:
Art and Design
Career and Technical Education
Education
Fine Arts
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Katherine Beggs
Melissa Straten
Sara Stemler
TeachEngineering.org
Date Added:
09/18/2014
The Art of Approximation in Science and Engineering: How to Whip Out Answers Quickly
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Subject:
Algebra
Career and Technical Education
Mathematics
Numbers and Operations
Physical Science
Physics
Technology and Engineering
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Stephen M. Hou
Date Added:
10/10/2017