Students are introduced to a unique fluid ferrofluids the shape of which …
Students are introduced to a unique fluid ferrofluids the shape of which can be influenced by magnetic fields. This activity supplements traditional magnetism activities and offers comparisons between large-scale materials and nanomaterials.Students are introduced to the concepts of magnetism, surfactants and nanotechnology by relating movie magic to practical science. Students observe ferrofluid properties as a stand-alone fluid and under an imposed magnetic field. They learn about the components of ferrofluids and their functionality as they create shapes using magnetically controlled ferrofluids and create their masterpieces.
Students watch video clips from the October Sky and Harry Potter and …
Students watch video clips from the October Sky and Harry Potter and the Sorcerer's Stone movies to see examples of projectile motion. Then they explore the relationships between displacement, velocity and acceleration, and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on "The Science Behind Harry Potter" theme. Students' interest is piqued by the use of popular culture in the classroom.
In this fun, engaging activity, students are introduced to a unique type …
In this fun, engaging activity, students are introduced to a unique type of fluid ferrofluids whose shape can be influenced by magnetic fields! Students act as materials engineers and create their own ferrofluids. They are challenged to make magnetic ink out of ferrofluids and test their creations to see if they work. Concurrently, they learn more about magnetism, surfactants and nanotechnology. As they observe fluid properties as a standalone-fluid and under an imposed magnetic field, they come to understand the components of ferrofluids and their functionality.
Students determine the refractive index of a liquid with a simple technique …
Students determine the refractive index of a liquid with a simple technique using a semi-circular hollow block. Then they predict the refractive index of a material (a Pyrex glass tube) by matching it with the known refractive index of a liquid using the percent light transmission measurement. The homemade light intensity detector uses an LED and multimeter, which are relatively inexpensive (and readily available) compared to commercially available measurement instruments.
This article examines the reading comprehension strategy known as making connections. It …
This article examines the reading comprehension strategy known as making connections. It involves linking what is being read (the text) to what is already known (schema, or background knowledge). The author provides links to four online resources that will help readers use the strategy in K-5 science and literacy classrooms. The article appears in the free, online magazine Beyond Weather and the Water Cycle, which integrates science and literacy instruction.
The reading strategy known as making connections can greatly enhance students' understanding …
The reading strategy known as making connections can greatly enhance students' understanding of any text. This article offers resources that teachers can use to instruct K-5 students in using the strategy. The free, online magazine Beyond Weather and the Water Cycle integrates science and literacy instruction. Each issue contains lessons and activities that combine literacy and science experiences.
In this activity, learners slide shapes to create unusual tiled patterns. Learners …
In this activity, learners slide shapes to create unusual tiled patterns. Learners transform a rectangle into a more interesting shape and then make a tessellation by repeating that shape over and over again. Learners will also calculate the area of a rectangle. This activity works best as a "centers" activity.
A realistic mass and spring laboratory. Hang masses from springs and adjust …
A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.
Molecular Workbench is a FREE and OPEN SOURCE, downloadable software utilizing Visual, …
Molecular Workbench is a FREE and OPEN SOURCE, downloadable software utilizing Visual, Interactive Simulations for Teaching & Learning Science. A typical MW module is a comprehensive learning package consisting of a series of scaffolded pages that contain text, simulations, tools, controls, graphs, navigation links, and embedded assessments. The user interfaces of simulations in MW can be customized for students of different levels (grades 6-16). This unique feature enables it to support a wide range of instructional strategies such as inquiry-based, discovery-based, and problem-based learning. (For Windows, OSX. Must have Java)
This interactive activity adapted from A Science Odyssey Web site helps you …
This interactive activity adapted from A Science Odyssey Web site helps you visualize different types of plate tectonic activity and shows the impact this activity has on Earth's surface.
Students perform an activity similar to the childhood “telephone” game in which …
Students perform an activity similar to the childhood “telephone” game in which each communication step represents a biological process related to the passage of DNA from one cell to another. This game tangibly illustrates how DNA mutations can happen over several cell generations and the effects the mutations can have on the proteins that cells need to produce. Next, students use the results from the “telephone” game (normal, substitution, deletion or insertion) to test how the mutation affects the survivability of an organism in the wild. Through simple enactments, students act as “predators” and “eat” (remove) the organism from the environment, demonstrating natural selection based on mutation.
Students learn about mutations to both DNA and chromosomes, and uncontrolled changes …
Students learn about mutations to both DNA and chromosomes, and uncontrolled changes to the genetic code. They are introduced to small-scale mutations (substitutions, deletions and insertions) and large-scale mutations (deletion duplications, inversions, insertions, translocations and nondisjunctions). The effects of different mutations are studied as well as environmental factors that may increase the likelihood of mutations. A PowerPoint® presentation and pre/post-assessments are provided.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
Through two lessons and four activities, students learn about nanotechnology, its extreme …
Through two lessons and four activities, students learn about nanotechnology, its extreme smallness, and its vast and growing applications in our world. Embedded within the unit is a broader introduction to the field of material science and engineering and its vital role in nanotechnology advancement. Engaging mini-lab activities on ferrofluids, quantum dots and gold nanoparticles introduce students to specific fields within nanoscience and help them understand key concepts as the basis for thinking about engineering and everyday applications that use next-generation technology nanotechnology.
Nitrogen, one of the most abundant elements in the universe, is essential …
Nitrogen, one of the most abundant elements in the universe, is essential to life. This interactive activity adapted from the University of Alberta provides an overview of the nitrogen cycle.
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control …
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor! (Previously part of the Nuclear Physics simulation - now there are separate Alpha Decay and Nuclear Fission sims.)
Using their knowledge of the phases of matter, the scientific method, and …
Using their knowledge of the phases of matter, the scientific method, and polymers, student teams work as if they are chemical engineers to optimize the formula for slime. Hired by the fictional company, Slime Productions, students are challenged to modify the chemical composition of the basic formula for slime to maximize its "bounce factor."
Students learn about how a device made with dye from a plant, …
Students learn about how a device made with dye from a plant, specifically cherries, blackberries, raspberries and/or black currents, can be used to convert light energy into electrical energy. They do this by building their own organic solar cells and measuring the photovoltaic devices' performance based on power output.
This interactive Flash animation allows students to explore size estimation in one, …
This interactive Flash animation allows students to explore size estimation in one, two and three dimensions. Multiple levels of difficulty allow for progressive skill improvement. In the simplest level, users estimate the number of small line segments that can fit into a larger line segment. Intermediate and advanced levels offer feature games that explore area of rectangles and circles, and volume of spheres and cubes. Related lesson plans and student guides are available for middle school and high school classroom instruction. Editor's Note: When the linear dimensions of an object change by some factor, its area and volume change disproportionately: area in proportion to the square of the factor and volume in proportion to its cube. This concept is the subject of entrenched misconception among many adults. This game-like simulation allows kids to use spatial reasoning, rather than formulas, to construct geometric sense of area and volume. This is part of a larger collection developed by the Physics Education Technology project (PhET).
From drinking fountains at playgrounds, water systems in homes, and working bathrooms …
From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.