Updating search results...

Search Resources

40 Results

View
Selected filters:
  • wind
Natural Disasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to our planet's structure and its dynamic system of natural forces through an examination of the natural hazards of earthquakes, volcanoes, landslides, tsunamis, floods and tornados, as well as avalanches, fires, hurricanes and thunderstorms. They see how these natural events become disasters when they impact people, and how engineers help to make people safe from them. Students begin by learning about the structure of the Earth; they create clay models showing the Earth's layers, see a continental drift demo, calculate drift over time, and make fault models. They learn how earthquakes happen; they investigate the integrity of structural designs using model seismographs. Using toothpicks and mini-marshmallows, they create and test structures in a simulated earthquake on a tray of Jell-O. Students learn about the causes, composition and types of volcanoes, and watch and measure a class mock eruption demo, observing the phases that change a mountain's shape. Students learn that the different types of landslides are all are the result of gravity, friction and the materials involved. Using a small-scale model of a debris chute, they explore how landslides start in response to variables in material, slope and water content. Students learn about tsunamis, discovering what causes them and makes them so dangerous. Using a table-top-sized tsunami generator, they test how model structures of different material types fare in devastating waves. Students learn about the causes of floods, their benefits and potential for disaster. Using riverbed models made of clay in baking pans, students simulate the impact of different river volumes, floodplain terrain and levee designs in experimental trials. They learn about the basic characteristics, damage and occurrence of tornadoes, examining them closely by creating water vortices in soda bottles. They complete mock engineering analyses of tornado damage, analyze and graph US tornado damage data, and draw and present structure designs intended to withstand high winds.

Subject:
Career and Technical Education
Ecology
Life Science
Technology and Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
See individual lessons and activities.
Date Added:
10/14/2015
Natural Frequency and Buildings
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about frequency and period, particularly natural frequency using springs. They learn that the natural frequency of a system depends on two things: the stiffness and mass of the system. Students see how the natural frequency of a structure plays a big role in the building surviving an earthquake or high winds.

Subject:
Career and Technical Education
Education
Life Science
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
GK-12 Program, School of Engineering and Applied Science,
Jake Moravec
TeachEngineering.org
Date Added:
09/18/2014
Natural Phenomena Investigators (NPI): A Multidisciplinary Investigation of the Cottonville Fire
Rating
0.0 stars

NUTSHELL:  In this lesson, students work in teams and use primary data sources, such as weather data and an emergency radio traffic log, to investigate the Cottonville Fire.  Using primary documents such as newspaper articles, students study how the fire was suppressed and evaluate successes and limitations to fighting the fire.  To conclude, teams are given post-fire landowner dilemmas to discuss.  
BIG IDEAS
In Wisconsin, there are two main types of wildland fire – wildfire and prescribed fire. Wildfires start without the intent of the landowner or land manager and are uncontrolled and unwanted. Prescribed fires are contained and are planned to meet the goals of a landowner or land manager.The ignition of wildland fire can be caused by human activity (e.g., debris burning and other outdoor burning, machine sparks, children playing with matches, power lines, fireworks) or natural sources (e.g., lightning, spontaneous combustion). Human activity is responsible for most wildland fires in Wisconsin.Fire requires oxygen, heat, and fuel to exist. Collectively these elements are known as the fire triangle. Under most conditions, the three elements can be manipulated to slow or stop the spread of fire.Fire behavior is influenced by topography, weather, and fuel characteristics. The fire season is determined by seasonal changes in weather and fuel.Wildland fire management has direct and indirect costs and benefits for the economy. Effective wildland fire management requires both financial and human resources.The wildland/urban interface is an area where human structures exist among wildland fuels. As people move into fire prone areas, the potential for ignition of wildland fire increases, and buildings and other human-made objects become a possible fuel source.
OBJECTIVES Upon completion of this lesson, students will be able to:
Explore the ecologic, economic, and social affects of wildfire.Examine multiple data sources to make predictions and draw conclusions about a natural phenomenon.Discuss how wildfire behaves and the factors that influence this behavior.Analyze wildfire suppression efforts and evaluate challenges in each.
SUBJECT AREAS Geography, Mathematics, Science, Social Studies
LESSON/ACTIVITY TIME
Total Lesson Time: 235 minutesTime Breakdown: Introduction--5 minutes; Activity 1--60 minutes; Activity 2--90 minutes; Activity 3 --40 minutes; Conclusion--40 minutes

Subject:
Environmental Science
Geography
Life Science
Mathematics
Social Studies
Material Type:
Lesson
Lesson Plan
Provider:
LEAF, Wisconsin Department of Natural Resources - Division of Forestry, and Wisconsin Center for Environmental Education
Date Added:
01/01/2007
Power Your House with Wind
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers harness the energy of the wind to produce power by following the engineering design process as they prototype two types of wind turbines and test to see which works best. Students also learn how engineers decide where to place wind turbines, and the advantages and disadvantages to using wind power compared to other non-renewable energy sources.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
Powering the U.S.
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson provides students with an overview of the electric power industry in the United States. Students also become familiar with the environmental impacts associated with a variety of energy sources.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Frank Burkholder
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Renewable Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to the types of renewable energy resources. They are involved in activities to help them understand the transformation of energy (solar, water and wind) into electricity. Students explore the different roles of engineers working in renewable energy fields.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Integrated Teaching and Learning Program,
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Renewable Energy Design: Wind Turbines
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS GK-12 Program, Polytechnic Institute of New York University
Gisselle Cunningham, Russell Holstein, Lindrick Outerbridge
Date Added:
10/13/2017
Renewable Energy Living Lab: Energy Experts
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate various renewable energy sources and the feasibility of implementing these sources. Working in small groups, students use data from the Renewable Energy Living Lab to describe and understand the way the world works. The data is obtained through observation and experimentation. Using the living lab gives students and teachers the opportunity to practice analyzing data to solve problems or answer questions, in much the same way that scientists and engineers do every day.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Civil and Environmental Engineering Department,
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Date Added:
09/18/2014
Renewable Energy Living Lab: Exploring Regional and Local Resources
Read the Fine Print
Educational Use
Rating
0.0 stars

Students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations. They become familiar with where the most common sources of renewable energy are distributed across the U.S. Through this activity, students and teachers gain familiarity with the living lab's GIS graphic interface and query functions, and are exposed to the available data in renewable energy databases, learning how to query to find specific information for specific purposes. The activity is intended as a "training" activity prior to conducting activities such as The Bright Idea activity, which includes a definitive and extensive end product (a feasibility plan) for students to create.

Subject:
Career and Technical Education
Ecology
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Civil and Environmental Engineering Department,
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Stormy Skies
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that wind and storms can form at the boundaries of interacting high and low pressure air masses. They learn the distinguishing features of the four main types of weather fronts (warm fronts, cold fronts, stationary fronts and occluded fronts) and how those fronts are depicted on a surface weather analysis, or weather map. Students also learn several different ways that engineers help with storm prediction, analysis and protection.

Subject:
Atmospheric Science
Career and Technical Education
Earth and Space Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Glen Sirakavit
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date Added:
09/18/2014
Thar She Blows!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about wind as a source of renewable energy and explore the advantages and disadvantages wind turbines and wind farms. They also learn about the effectiveness of wind turbines in varying weather conditions and how engineers work to create wind power that is cheaper, more reliable and safer for wildlife.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Natalie Mach
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
09/18/2014
Watching for Wind: An Effort to Get the Upper Hand on Wildfire
Read the Fine Print
Educational Use
Rating
0.0 stars

Climate scientists project that future climate conditions will result in increased risk of wildfire across much of the Southwest. Although fires are a natural part of Southern California landscapes, efforts by SDG&E and their partners may help minimize the impacts of future fires.

Subject:
Environmental Science
Life Science
Material Type:
Case Study
Provider:
National Oceanic and Atmospheric Administration
Provider Set:
U.S. Climate Resilience Toolkit
Date Added:
08/29/2016
Weather and Atmosphere
Read the Fine Print
Educational Use
Rating
0.0 stars

In this unit, students learn the basics about weather and the atmosphere. They investigate materials engineering as it applies to weather and the choices available to us for clothing to counteract the effects of weather. Students have the opportunity to design and analyze combinations of materials for use in specific weather conditions. In the next lesson, students also are introduced to air masses and weather forecasting instrumentation and how engineers work to improve these instruments for atmospheric measurements on Earth and in space. Then, students learn the distinguishing features of the four main types of weather fronts that accompany high and low pressure air masses and how those fronts are depicted on a weather map. During this specific lesson, students learn different ways that engineers help with storm prediction, analysis and protection. In the final lesson, students consider how weather forecasting plays an important part in their daily lives by learning about the history of weather forecasting and how improvements in weather technology have saved lives by providing advance warning of natural disasters.

Subject:
Atmospheric Science
Career and Technical Education
Earth and Space Science
Technology and Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
See individual lessons and activities.
Date Added:
10/14/2015
What to Wear? What to Drink? Weather Patterns and Climatic Regions
Read the Fine Print
Educational Use
Rating
0.0 stars

How does our climate affect us? How do we decide what to wear each day? What factors determine if our clothing choices are comfortable? What is the source of our water? Students explore characteristics that define climatic regions. They learn how tropical, desert, coastal and alpine climates result in different lifestyle, clothing, water source and food options for the people who live there. They learn that a location's latitude, altitude, land features, weather conditions, and distance from large bodies of water, determines its climate. Students discuss how engineers help us adapt to all climates by designing clothing, shelters, weather technologies and clean water systems.

Subject:
Atmospheric Science
Career and Technical Education
Earth and Space Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Jay Shah
Malinda Schaefer Zarske
Date Added:
09/18/2014
Wild Wind
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will learn the difference between global, prevailing and local winds. In this activity, students will make a wind vane out of paper, a straw and a soda bottle and use it to measure wind direction over time. Finally, they will analyze their data to draw conclusions about the prevailing winds in their area.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/26/2008
Wind Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about wind energy by making a pinwheel to model a wind turbine. Just like engineers, they decide where and how their turbine works best by testing it in different areas of the playground.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Wind Power
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students develop an understanding of how engineers use wind to generate electricity. They will build a model anemometer to better understand and measure wind speed.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Integrated Teaching and Learning Program,
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
10/14/2015
Wind Power! Designing a Wind Turbine
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers transform wind energy into electrical energy by building their own miniature wind turbines and measuring the electrical current it produces. They explore how design and position affect the electrical energy production.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Natalie Mach
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
09/18/2014
Windmill of Your Mind: Distributed Energy Goes to School
Read the Fine Print
Educational Use
Rating
0.0 stars

Students research the feasibility of installing a wind-turbine distributed energy (DE) system for their school. They write a proposal (actually, the executive summary of a proposal) to the school principal based on their findings and recommendations. While this activity is geared towards fifth-grade and older students, and Internet research capabilities are required, some portions of this activity may be appropriate for younger students.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise Carlson
Integrated Teaching and Learning Program,
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Zero-Energy Housing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate passive solar building design with a focus solely on heating. They learn how insulation, window placement, thermal mass, surface colors, and site orientation play important roles in passive solar heating. They use this information to design and build their own model houses, and test them for thermal gains and losses during a simulated day and night. Teams compare designs and make suggestions for improvements.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Jonathan MacNeil
Malinda Schaefer Zarske
Date Added:
09/18/2014