Updating search results...

# 108 Results

View
Selected filters:
• volume
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this task is to use geometric and algebraic reasoning to model a real-life scenario. In particular, students are in several places (implicitly or explicitly) to reason as to when making approximations is reasonable and when to round, when to use equalities vs. inequalities, and the choice of units to work with (e.g., mm vs. cm).

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
05/01/2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This task is primarily about volume and surface area, although it also gives students an early look at converting between measurements in scale models and the real objects they correspond to.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
05/01/2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this series of tasks is to build in a natural way from accessible, concrete problems involving volume to a more abstract understanding of volume. The purpose of this first task is to see the relationship between the side-lengths of a cube and its volume.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
05/01/2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this series of tasks is to build in a natural way from accessible, concrete problems involving volume to a more abstract understanding of volume. In this iteration, we do away with the lines that delineate individual unit cubes (which makes it more abstract) and generalize from cubes to rectangular prisms.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
05/01/2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this series of tasks is to build in a natural way from accessible, concrete problems involving volume to a more abstract understanding of volume. Here, we are given the volume and are asked to find the height.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
05/01/2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this series of tasks is to build in a natural way from accessible, concrete problems involving volume to a more abstract understanding of volume. This problem is based on ArchimedesŐ Principle that the volume of an immersed object is equivalent to the volume of the displaced water.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
05/01/2012
Unrestricted Use
CC BY
Rating
0.0 stars

Watch your solution change color as you mix chemicals with water. Then check molarity with the concentration meter. What are all the ways you can change the concentration of your solution? Switch solutes to compare different chemicals and find out how concentrated you can go before you hit saturation!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily B. Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
PhET Interactive Simulations
03/09/2012
Educational Use
Rating
0.0 stars

Students conduct Internet research to investigate the purpose and current functioning status of some of the largest dams throughout the world. They investigate the success or failure of eight dams and complete a worksheet. While researching the dams, they also gain an understanding of the scale of these structures by recording and comparing their reservoir capacities. Students come to understand that dams, like all engineered structures, have a finite lifespan and require ongoing maintenance and evaluation for their usefulness.

Subject:
Career and Technical Education
Mathematics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Integrated Teaching and Learning Program,
Jeff Lyng
Kristin Field
Megan Podlogar
TeachEngineering.org
09/18/2014
Unrestricted Use
CC BY
Rating
0.0 stars

You Pour, I Choose presents students with a real-world application of which cylindrical container holds more soda. Students will find the volume of soda in two different sized cylinders.

Subject:
Mathematics
Material Type:
Diagram/Illustration
Simulation
Provider:
Dan Meyer
12/28/2015
Unrestricted Use
CC BY
Rating
0.0 stars

Why do objects like wood float in water? Does it depend on size? Create a custom object to explore the effects of mass and volume on density. Can you discover the relationship? Use the scale to measure the mass of an object, then hold the object under water to measure its volume. Can you identify all the mystery objects?

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Jonathan Olson
Kathy Perkins
Kelly Lancaster
Noah Podolefsky
PhET Interactive Simulations
Sam Reid
Trish Loeblein
02/16/2011
Unrestricted Use
CC BY
Rating
0.0 stars

Why do objects like wood float in water? Does it depend on size? Create a custom object to explore the effects of mass and volume on density. Can you discover the relationship? Use the scale to measure the mass of an object, then hold the object under water to measure its volume. Can you identify all the mystery objects?

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Lancaster, Kelly
Loeblein, Patricia
Malley, Chris
Olson, Jonathan
Paulson, Archie
Perkins, Kathy
Podolefsky, Noah
Reid, Sam
Wieman, Carl
09/01/2010
Educational Use
Rating
0.0 stars

In this first part of a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate the densities of several common, irregularly shaped objects with the purpose to resolve confusion about mass and density. After this activity, conduct the associated Density Column Lab - Part 2 activity before presenting the associated Density & Miscibility lesson for discussion about concepts that explain what students have observed.

Subject:
Career and Technical Education
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
GK-12 Program,
Jessica Ray, Phyllis Balcerzak, Barry Williams
TeachEngineering.org
09/18/2014
Educational Use
Rating
0.0 stars

Concluding a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate densities of several household liquids and compare them to the densities of irregularly shaped objects (as determined in Part 1). Then they create density columns with the three liquids and four solid items to test their calculations and predictions of the different densities. Once their density columns are complete, students determine the effect of adding detergent to the columns. After this activity, present the associated Density & Miscibility lesson for a discussion about why the column layers do not mix.

Subject:
Career and Technical Education
Chemistry
Life Science
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
GK-12 Program,
Jessica Ray, Phyllis Balcerzak, Barry Williams
TeachEngineering.org
09/18/2014
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Middle School Students love these two things together--squeezing things that are squishy, and eating candy!This is a lab using Playdough and Tootsie Rolls, in which students will measure the volume, mass, and the density of both substances.  Students should gain a deeper meaning of what the physical property of density is after completing this lab.  They should be able to explain WHY one substance is more dense or less dense than another.

Subject:
Life Science
Material Type:
Lesson Plan
Author:
Nancy Marita
12/12/2018
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of the task is to analyze a plausible real-life scenario using a geometric model. The task requires knowledge of volume formulas for cylinders and cones, some geometric reasoning involving similar triangles, and pays attention to reasonable approximations and maintaining reasonable levels of accuracy throughout.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
05/01/2012
Educational Use
Rating
0.0 stars

This six-day lesson provides students with an introduction to the importance of energy in their lives and the need to consider how and why we consume the energy we do. The lesson includes activities to engage students in general energy issues, including playing an award-winning Energy Choices board game, and an optional graphing activity that provides experience with MS Excel graphing and perspectives on how we use energy and how much energy we use.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
09/18/2014
Educational Use
Rating
0.0 stars

Students learn that buoyancy is responsible for making boats, hot air balloons and weather balloons float. They calculate whether or not a boat or balloon will float, and calculate the volume needed to make a balloon or boat of a certain mass float. Conduct the first day of the associated activity before conducting this lesson.

Subject:
Career and Technical Education
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Integrated Teaching and Learning Program,
Marissa H. Forbes
Mike Soltys
TeachEngineering.org
09/18/2014
Unrestricted Use
CC BY
Rating
0.0 stars

Explore size estimation in one, two and three dimensions! Multiple levels of difficulty allow for progressive skill improvement.

Subject:
Mathematics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Dubson, Michael
Gratny, Mindy
06/01/2005
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to solve problems involving area and volume, and in particular, to help you identify and assist students who have difficulties with the following: computing perimeters, areas and volumes using formulas; and finding the relationships between perimeters, areas, and volumes of shapes after scaling.

Subject:
Geometry
Mathematics
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education