How does infrastructure meet our needs? What happens when we are cut …
How does infrastructure meet our needs? What happens when we are cut off from that supporting infrastructure? As a class, students brainstorm, identify and explore the pathways where their food, water and energy originate, and where wastewater and solid waste go. After creating a diagram that maps a neighborhood's inputs and waste outputs, closed and open system concepts are introduced by imagining the neighborhood enclosed in a giant dome, cut off from its infrastructure systems. Students consider the implications and the importance of sustainable resource and waste management. They learn that resources are interdependent and that recycling wastes into resources is key to sustain a closed system.
Student teams find solutions to hypothetical challenge scenarios that require them to …
Student teams find solutions to hypothetical challenge scenarios that require them to sustainably manage both resources and wastes. They begin by creating a card representing themselves and the resources (inputs) they need and wastes (outputs) they produce. Then they incorporate additional cards for food and energy components and associated necessary resources and waste products. They draw connections between outputs that provide inputs for other needs, and explore the problem of using linear solutions in resource-limited environments. Then students incorporate cards based on biorecycling technologies, such as algae photobioreactors and anaerobic digesters in order to make circular connections. Finally, the student teams present their complete biorecycling engineering solutions to their scenarios in poster format by connecting outputs to inputs, and showing the cycles of how wastes become resources.
This lesson introduces the ways that engineers study and harness the wind. …
This lesson introduces the ways that engineers study and harness the wind. Students will learn about the different kinds of winds and how to measure wind direction. In addition, students will learn how air pressure creates winds and how engineers build and test wind turbines to harness energy from wind.
This activity simulates the extraction of limited, nonrenewable resources from a "mine," …
This activity simulates the extraction of limited, nonrenewable resources from a "mine," so students can experience first-hand how resource extraction becomes more difficult over time. Students gather data and graph their results to determine the peak in resource extraction. They learn about the limitations of nonrenewable resources, and how these resources are currently used.
In this activity, students will simulate the equal and unequal distribution of …
In this activity, students will simulate the equal and unequal distribution of our renewable resources. Also, they will consider the impact of our increasing population upon these resources and how engineers develop technologies to create resources.
Students are presented with examples of the types of problems that environmental …
Students are presented with examples of the types of problems that environmental engineers solve, specifically focusing on air and land quality issues. Air quality topics include air pollution sources, results of poor air quality including global warming, acid rain and air pollution, as well as ways to reduce air pollution. Land quality topics include the differences between renewable and non-renewable resources, the results of non-renewable resource misuse and ways to reduce land pollution. (Water quality is introduced in a later lesson in a separate presentation, as it is the focal point of this unit curriculum.)
During this activity, students will learn how environmental engineers monitor water quality …
During this activity, students will learn how environmental engineers monitor water quality in resource use and design. They will employ environmental indicators to assess the water quality of a nearby stream. Students will make general observations of water quality as well as count the number of macroinvertabrates. They will then use the information they collected to create a scale to rate how good or bad the water quality of the stream. Finally, the class will compare their numbers and discuss and defend their results.
In this scenario-based activity, students design ways to either clean a water …
In this scenario-based activity, students design ways to either clean a water source or find a new water source, depending on given hypothetical family scenarios. They act as engineers to draw and write about what they could do to provide water to a community facing a water crisis. They also learn the basic steps of the engineering design process.
Students will learn the difference between global, prevailing and local winds. In …
Students will learn the difference between global, prevailing and local winds. In this activity, students will make a wind vane out of paper, a straw and a soda bottle and use it to measure wind direction over time. Finally, they will analyze their data to draw conclusions about the prevailing winds in their area.
Students learn about wind energy by making a pinwheel to model a …
Students learn about wind energy by making a pinwheel to model a wind turbine. Just like engineers, they decide where and how their turbine works best by testing it in different areas of the playground.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.