Updating search results...

Search Resources

8 Results

View
Selected filters:
  • recombinant-dna
Bacteria Transformation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Matthew Zelisko, Kimberly Anderson
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Elements of Mechanical Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule)."

Subject:
Career and Technical Education
Chemistry
Genetics
Life Science
Physical Science
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Culpepper, Martin
Date Added:
01/01/2009
Fundamentals of Biology, Fall 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Eric Lander
Graham Walker
Hazel Sive
Robert Weinberg
Sallie Chisholm Mischke Michelle
Tyler Jacks
Date Added:
01/01/2011
Introduction to Biological Engineering Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's materials are used in this Spring 2009 version, and are included with his permission. This OCW Web site is based on the OpenWetWare class Wiki, found at OpenWetWare: 20.020 (S09)"

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kuldell, Natalie
Date Added:
01/01/2009
Introduction to Biology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2004
Introduction to Genetic Engineering and Its Applications
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers apply their understanding of DNA to manipulate specific genes to produce desired traits, and how engineers have used this practice to address current problems facing humanity. They learn what genetic engineering means and examples of its applications, as well as moral and ethical problems related to its implementation. Students fill out a flow chart to list the methods to modify genes to create GMOs and example applications of bacteria, plant and animal GMOs.

Subject:
Career and Technical Education
Genetics
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Matthew Zelisko, Kimberly Anderson
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Principles and Practice of Science Communication, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Develop skills as science communicators through projects and analysis of theoretical principles. Case studies explore the emergence of popular science communication over the past two centuries and consider the relationships among authors, audiences and media. Project topics are identified early in the term and students work with MIT Museum staff. Projects may include physical exhibits, practical demonstrations, or scripts for public programs.

Subject:
Business and Information Technology
Career and Technical Education
Fine Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Durant, John
Date Added:
01/01/2006
Restriction Enzymes
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students learn about restriction enzymes and how they work through this lesson.  First they will use an interactive website to see how the restriction enzymes locate their cut sites on the DNA and then actually cut the DNA, so it can be combined with other DNA to make a recombinant organism.  Then they use two additional worksheets to practice ¨cutting DNA¨ on paper.  Then they conduct the Restriction Enzyme Activity, where they write out a DNA strand on paper and physically cut the DNA using scissors to create their own recombinant strand of DNA.  

Subject:
Agriculture, Food and Natural Resources
Material Type:
Lesson Plan
Author:
Amanda Levzow Seichter
Date Added:
06/21/2018