Updating search results...

Search Resources

70 Results

View
Selected filters:
  • potential-energy
Alpha Decay
Unrestricted Use
CC BY
Rating
0.0 stars

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.

Subject:
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Noah Podolefsky
Perkins, Kathy
Ron LeMaster
Sam McKagan
Wendy Adams
Date Added:
07/21/2011
Alpha Decay (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.

Subject:
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Noah Podolefsky
Perkins, Kathy
Ron LeMaster
Sam McKagan
Wendy Adams
Date Added:
09/02/2012
Bombs Away!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build devices to protect and accurately deliver dropped eggs. The devices and their contents represent care packages that must be safely delivered to people in a disaster area with no road access. Similar to engineering design teams, students design their devices using a number of requirements and constraints such as limited supplies and time. The activity emphasizes the change from potential energy to kinetic energy of the devices and their contents and the energy transfer that occurs on impact. Students enjoy this competitive challenge as they attain a deeper understanding of mechanical energy concepts.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Dan Choi, MUSIC Program
Engineering K-PhD Program,
Randall Evans, MUSIC Program
Date Added:
09/18/2014
Bouncing Balls
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine how different balls react when colliding with different surfaces, giving plenty of opportunity for them to see the difference between elastic and inelastic collisions, learn how to calculate momentum, and understand the principle of conservation of momentum.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Bouncing Balls (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students examine how different balls react when colliding with different surfaces. Also, they will have plenty of opportunity to learn how to calculate momentum and understand the principle of conservation of momentum.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Bailey Jones
Ben Sprague
Chris Yakacki
Denise Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Building Roller Coasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build their own small-scale model roller coasters using pipe insulation and marbles, and then analyze them using physics principles learned in the associated lesson. They examine conversions between kinetic and potential energy and frictional effects to design roller coasters that are completely driven by gravity. A class competition using different marbles types to represent different passenger loads determines the most innovative and successful roller coasters.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Engineering K-PhD Program,
Scott Liddle
Date Added:
10/14/2015
Clean Energy: Hydropower
Read the Fine Print
Educational Use
Rating
0.0 stars

Hydropower generation is introduced to students as a common purpose and benefit of constructing dams. Through an introduction to kinetic and potential energy, students come to understand how a dam creates electricity. They also learn the difference between renewable and non-renewable energy.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Kristin Field
Michael Bendewald
Sara Born
Date Added:
09/18/2014
Collisions and Momentum: Bouncing Balls
Read the Fine Print
Educational Use
Rating
0.0 stars

As a continuation of the theme of potential and kinetic energy, this lesson introduces the concepts of momentum, elastic and inelastic collisions. Many sports and games, such as baseball and ping-pong, illustrate the ideas of momentum and collisions. Students explore these concepts by bouncing assorted balls on different surfaces and calculating the momentum for each ball.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
Design a Paper Airplane Launcher
Rating
0.0 stars

Aircraft carriers are much shorter than a typical airport runway. How do airplanes manage to gain enough speed for takeoff over such a short distance? A catapult gives them an extra boost! In this lesson, your students will practice engineering design as they build their own paper airplane launchers, while learning about kinetic and potential energy.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Author:
Ben Finio
Date Added:
03/30/2024
Downhill Race
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Through this activity, students will be able to explore the role of mass distribution as cylinders roll down an incline.
Students will roll two cylinders filled with the same mass, but distributed differentlly. Students will predict which one reaches the bottom faster.
Using easily accessible materials, this activity can be conducted in the classroom.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Learning Task
Simulation
Provider:
Exploratorium Teacher Institute
Date Added:
06/21/2016
The Earth is a Changin'
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces and describes the main types of erosion (i.e., chemical, water, wind, glacier and temperature). Students learn examples of each type of erosion and discuss how erosion changes the surface of the Earth. Students also learn why engineers need to be aware of the different types of erosion in order to protect structures and landmarks from the damaging effects erosion can cause. Figure 1 is an excellent illustration of water erosion.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
AMPS GK-12 Program,
Carlo Yuvienco, Paul Phamduy
Date Added:
09/18/2014
Energetic Musical Instruments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn to apply the principles and concepts associated with energy and the transfer of energy in an engineering context by designing and making musical instruments. They choose from a variety of provided supplies to make instruments capable of producing three different tones. After completing their designs, students explain the energy transfer mechanism in detail and describe how they could make their instruments better.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Adam Kempton
Engineering K-PhD Program,
Date Added:
10/14/2015
Energy Forms, States and Conversions
Read the Fine Print
Educational Use
Rating
0.0 stars

The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.

Subject:
Career and Technical Education
Chemistry
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Office of Educational Partnerships,
Susan Powers
Susan Powers, Jan DeWaters, and a number of Clarkson and St. Lawrence University students in the K-12 Project Based Learning Partnership Program
TeachEngineering.org
Date Added:
09/18/2014
Energy Skate Park
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experiment with an online virtual laboratory set at a skate park. They make predictions of graphs before they use the simulation to create graphs of energy vs. time under different conditions. This simulation experimentation strengths their comprehension of conservation of energy solely between gravitational potential energy and kinetic energy

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Joel Daniel (funded by the NSF-funded Center for Compact and Efficient Fluid Power at the University of Minnesota)
Megan Johnston
VU Bioengineering RET Program,
Date Added:
10/14/2015
Energy Skate Park
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams
Carl
Carl Wieman
Danielle
Danielle Harlow
Dubson
Harlow
Kathy
Kathy Perkins
Loeblein
Michael
Michael Dubson
Perkins
PhET Interactive Simulations
Reid
Sam
Sam Reid
Trish
Trish Loeblein
Wendy
Wendy Adams
Wieman
Date Added:
10/03/2006
Energy Skate Park (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Dubson, Michael
Harlow, Danielle
Loeblein, Trish
Perkins, Kathy
Reid, Sam
Wieman, Carl
Date Added:
07/02/2008
Energy Skate Park: Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Students will: Predict the kinetic and potential energy of objects Design a skate park Examine how kinetic and potential energy interact with each other

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Emily B Moore
Katherine Perkins
Noah Podolefsky
Noah Podolefsky & Ariel Paul
PhET Interactive Simulations
Sam Reid
Trish Loeblein
Date Added:
01/31/2012
Energy Storage Derby and Proposal
Read the Fine Print
Educational Use
Rating
0.0 stars

In Activity 5, as part of the Going Public step, students demonstrate their knowledge of how potential energy may be transferred into kinetic energy. Students design, build and test vehicle prototypes that transfer various types of potential energy into motion.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Joel Daniel (funded by the NSF-funded Center for Compact and Efficient Fluid Power at the University of Minnesota)
Megan Johnston
VU Bioengineering RET Program,
Date Added:
09/18/2014
Energy Transfer in Musical Instruments
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers concepts of energy and energy transfer utilizing energy transfer in musical instruments as an example. More specifically, the lesson explains the two different ways in which energy can be transferred between a system and its environment. The law of conservation of energy will also be taught. Example systems will be presented to students (two cars on a track and a tennis ball falling to the ground) and students will be asked to make predictions and explain the energy transfer mechanisms. The engineering focus comes in clearly in the associated activity when students are asked to apply the fundamental concepts of the lesson to design a musical instrument. The systems analyzed in the lesson should help a great deal in terms of discussing how to apply conservation of energy and energy transfer to make things.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Adam Kempton
Engineering K-PhD Program,
Date Added:
09/18/2014
Engineering in Sports
Read the Fine Print
Educational Use
Rating
0.0 stars

Imagining themselves arriving at the Olympic gold medal soccer game in Beijing, students begin to think about how engineering is involved in sports. After a discussion of kinetic and potential energy, an associated hands-on activity gives students an opportunity to explore energy absorbing materials as they try to protect an egg from being crushed.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Connor Lowrey
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Katherine Beggs
Melissa Straten
Date Added:
09/18/2014