Updating search results...

Search Resources

93 Results

View
Selected filters:
  • materials
Aerogels in Action
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experiment with a new material—aerogel. Aerogel is a synthetic (human-made) porous ultra-light (low-density) material, in which the liquid component of a gel is replaced with a gas. In this activity, student pairs use aerogel to simulate the environmental engineering application of cleaning up oil spills. In a simple and fun way, this activity incorporates density calculations, the material effects of surface area, and hydrophobic and hydrophilic properties.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University,
Lauren K. Redfern, Osman Karatüm, Claudia K. Gunsch and Desiree L. Plata
Date Added:
10/14/2015
Alloy Advantage
Read the Fine Print
Educational Use
Rating
0.0 stars

Students define and classify alloys as mixtures, while comparing and contrasting the properties of alloys to those of pure substances. Students learn that engineers investigate the structures and properties of alloys for biomedical and transportation applications. Pre- and post-assessment handouts are provided.

Subject:
Chemistry
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Janelle Orange
Robotics Engineering for a Better Life and Sustainable Future RET, College of Engineering, Michigan State University
Date Added:
10/13/2017
Alloy the Way to Mars
Read the Fine Print
Educational Use
Rating
0.0 stars

Acting as engineering teams, students take measurements and make calculations to determine the specific strength of various alloys and then report their data to the rest of the class. Using this class data, students write data-based recommendations to NASA regarding the best alloy to use in the construction of the engine and engine turbines for the Space Launch System that will eventually be used to transport astronauts to Mars.

Subject:
Chemistry
Mathematics
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Janelle Orange
Robotics Engineering for a Better Life and Sustainable Future RET, College of Engineering, Michigan State University
Date Added:
10/13/2017
The Amazing Aerogel
Read the Fine Print
Educational Use
Rating
0.0 stars

Aerogel, commonly called "frozen smoke," is a super-material with some amazing properties. In this lesson and its associated activity, students learn about this silicon-based solid with a sponge-like structure. Students also learn about density and how aerogel is 99.8% air by volume, making it the lightest solid known to humans! Further, students learn about basic heat transfer and how aerogel is a great thermal insulator, having 39 times more insulation than the best fiberglass insulation. Students also learn about the wide array of aerogel applications.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University,
Lauren K. Redfern, Osman Karatüm, Claudia K. Gunsch and Desiree L. Plata
Date Added:
10/14/2015
Analysis of Historic Structures, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An analysis of historical structures is presented in this class, presented in themed sections based around construction materials. Structures from all periods of history are analyzed. The goal of the class is to provide an understanding of the preservation of historic structures for all students.

Subject:
Art and Design
Fine Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ochsendorf, John Allen
Date Added:
01/01/2004
Architectural Design, Level III: A Student Center for MIT, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This studio will investigate the social, programmatic, tectonic and phenomenological performance and character of a student gathering place on the MIT campus. Whether it is simply for socializing or for more specific events, the student gathering place will serve as a refuge from the vigorous educational environment of the Institute, and it will reinforce a critical sense of "place" through the almost logical organization of its program. The place will foster a casual discovery of "being": a reflection upon the student's own existence based upon participation in group events and an intellectual attitude toward acting. To create a space that inspires, rather than imposes: such a discovery is the foremost challenge of this studio."

Subject:
Art and Design
Fine Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Domeyko, Fernando
Date Added:
01/01/2004
Architectural Design, Level II: Material and Tectonic Transformations: The Herreshoff Museum, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This semester students are asked to transform the Hereshoff Museum in Bristol, Rhode Island, through processes of erasure and addition. Hereshoff Manufacturing was recognized as one of the premier builders of America's Cup racing boats between 1890's and 1930's. The studio however, is about more then the program. It is about land, water, and wind and the search for expressing materially and tectonically the relationships between these principle conditions. That is, where the land is primarily about stasis (docking, anchoring and referencing our locus), water's fluidity holds the latent promise of movement and freedom. Movement is activated by wind, allowing for negotiating the relationship between water and land.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Performing and Visual Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lukez, Paul
Date Added:
01/01/2003
Battle of the Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the properties of composites using inexpensive materials and processing techniques. They create beams using Laffy Taffy and water, and a choice of various reinforcements (pasta, rice, candies) and fabricating temperatures. Student groups compete for the highest strength beam. They measure flexure strength with three-point bend tests and calculations. Results are compared and discussed to learn how different materials and reinforcement shapes affect material properties and performance.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Marc Bird
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Beating the Motion Sensor
Read the Fine Print
Educational Use
Rating
0.0 stars

Lighting is responsible for nearly one-third of the electricity use in buildings. One of the best ways to conserve energy is to make sure the lights are turned off when no one is in a room. This process can be automated using motion sensors. In this activity, students explore material properties as they relate to motion detection, and use that knowledge to make design judgments about what types of motion detectors to use in specific applications.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Darcie Chinnis
Integrated Teaching and Learning Program,
Janet Yowell
Date Added:
09/18/2014
Bend That Bar
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about material properties, and that engineers must consider many different materials properties when designing. This activity focuses on strength-to-weight ratios and how sometimes the strongest material is not always the best material.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Alex Conner
Geoffrey Hill
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Breaking Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about stress and strain by designing and building beams using polymer clay. They compete to find the best beam strength to beam weight ratio, and learn about the trade-offs engineers make when designing a structure.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Date Added:
10/14/2015
Building Big
Restricted Use
Copyright Restricted
Rating
0.0 stars

This is a great lab that walks students through interactive labs that include Forces, Loads, Materials and Shapes and how they affect the way we design and build structures.  Pairs really nicely with any design and build lab assignments like Bridges, Cranes, etc.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Simulation
Provider:
PBS
Date Added:
03/15/2017
Building Our Bridge to Fun!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students identify different bridge designs and construction materials used in modern day engineering. They work in construction teams to create paper bridges and spaghetti bridges based on existing bridge designs. Students progressively realize the importance of the structural elements in each bridge. They also measure vertical displacements under the center of the spaghetti bridge span when a load is applied. Vertical deflection is measured using a LEGO MINDSTORMS(TM) NXT intelligent brick and ultrasonic sensor. As they work, students experience tension and compression forces acting on structural elements of the two bridge prototypes. In conclusion, students discuss the material properties of paper and spaghetti and compare bridge designs with performance outcomes.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
AMPS GK-12 Program,
Eduardo Suescun
Date Added:
09/18/2014
The Business of Bioplastics
Read the Fine Print
Educational Use
Rating
0.0 stars

This video excerpt from NOVA’s Making Stuff: Cleaner and accompanying demonstration introduce students to the production and importance of bioplastics, or plastics made from plant or animal products.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
National Science Foundation
U.S. Department of Energy
WGBH Educational Foundation
Date Added:
11/09/2011
Capturing the Sun's Warmth
Read the Fine Print
Educational Use
Rating
0.0 stars

In the exploration of ways to use solar energy, students investigate the thermal energy storage capacities of different test materials to determine which to use in passive solar building design.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise Carlson
Integrated Teaching and Learning Program,
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
10/14/2015
Chemical Wonders
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to chemical engineering and learn about its many different applications. They are provided with a basic introduction to matter and its different properties and states. An associated hands-on activity gives students a chance to test their knowledge of the states of matter and how to make observations using their five senses: touch, smell, sound, sight and taste.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Katherine Beggs
Date Added:
09/18/2014
Choosing a Pyramid Site
Read the Fine Print
Educational Use
Rating
0.0 stars

Working in engineering project teams, students evaluate sites for the construction of a pyramid. They base their decision on site features as provided by a surveyor's report; distance from the quarry, river and palace; and other factors they deem important to the project based on their team's values and priorities.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise Carlson, with design input from the students in the spring 2005 K-12 Engineering Outreach Corps course.
Glen Sirakavit
Integrated Teaching and Learning Program,
Jacquelyn Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Computational Mechanics of Materials, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course will include: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms will include: Variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There will be a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. At the beginning of the course, the students will be given the source of a base code with all the elements of a finite element program which constitute overhead and do not contribute to the learning objectives of this course (assembly and equation-solving methods, etc.). Each assignment will consist of formulating and implementing on this basic platform, the increasingly complex algorithms resulting from the theory given in class, as well as in using the code to numerically solve specific problems. The application to real engineering applications and problems in engineering science will be stressed throughout.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Radovitzky, Raul A.
Date Added:
01/01/2003
Construct and Test Roofs for Different Climates
Read the Fine Print
Educational Use
Rating
0.0 stars

We design and create objects to make our lives easier and more comfortable. The houses in which we live are excellent examples of this. Depending on your local climate, the features of your house have been designed to satisfy your particular environmental needs: protection from hot, cold, windy and/or rainy weather. In this activity, students design and build model houses, then test them against various climate elements, and then re-design and improve them. Using books, websites and photos, students learn about the different types of roofs found on various houses in different environments throughout the world.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Center for Engineering Educational Outreach,
Martha Cyr; 2011 additions and attachments by Abigail T. Waltrous and Denise W. Carlson, University of Colorado Boulder
Date Added:
09/18/2014
Design a Bicycle Helmet
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the biomechanical characteristics of helmets, and are challenged to incorporate them into designs for helmets used for various applications. By doing this, they come to understand the role of enginering associated with saftey products. The use of bicycle helmets helps to protect the brain and neck in the event of a crash. To do this effectively, helmets must have some sort of crushable material to absorb the collision forces and a strap system to make sure the protection stays in place. The exact design of a helmet depends on the needs and specifications of the user.

Subject:
Art and Design
Career and Technical Education
Fine Arts
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
D. Schweitzer
G. Hase
K. M. Samuelson
Making the Connection,
Martha Cyr
Date Added:
09/18/2014