Updating search results...

Search Resources

20 Results

View
Selected filters:
  • energy-transfer
Alaska Tsunami
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video adapted from Alaska Sea Grant, discover why multiple tsunamis resulted from the Great Alaska Earthquake of 1964.

Subject:
Earth and Space Science
Ecology
Environmental Science
Forestry and Agriculture
Life Science
Oceanography
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
11/04/2008
The Effect of Land Masses on Climate
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video produced by ThinkTV, explore the effects of land masses on local climate conditions, and learn about regional impacts of land-atmosphere interactions.

Subject:
Ecology
Environmental Science
Forestry and Agriculture
Life Science
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
Corporation for Public Broadcasting
ThinkTV
Date Added:
11/12/2010
Energetic Musical Instruments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn to apply the principles and concepts associated with energy and the transfer of energy in an engineering context by designing and making musical instruments. They choose from a variety of provided supplies to make instruments capable of producing three different tones. After completing their designs, students explain the energy transfer mechanism in detail and describe how they could make their instruments better.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Adam Kempton
Engineering K-PhD Program,
Date Added:
10/14/2015
Energy Forms and Changes
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation lets learners explore how heating and cooling adds or removes energy. Use a slider to heat blocks of iron or brick to see the energy flow. Next, build your own system to convert mechanical, light, or chemical energy into electrical or thermal energy. (Learners can choose sunlight, steam, flowing water, or mechanical energy to power their systems.) The simulation allows students to visualize energy transformation and describe how energy flows in various systems. Through examples from everyday life, it also bolsters understanding of conservation of energy. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Emily Moore
John Blanco
Kathy Perkins
Noah Podolefsky
PhET Interactive Simulations
Trish Loeblein
Date Added:
04/25/2013
Energy Transfer in a Trebuchet
Read the Fine Print
Educational Use
Rating
0.0 stars

On NOVA, a team of carpenters, timber framers, engineers, and historians recreate a medieval throwing machine called a trebuchet. This adapted video segment explores how understanding energy transfer informs their design.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
The William and Flora Hewlett Foundation
WGBH Educational Foundation
Date Added:
04/19/2007
Exploring Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about energy, kinetic energy, potential energy, and energy transfer through a series of three lessons and three activities. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. The associated activities give students hands-on experience with examples of potential-to-kinetic energy transfers. The activities also provide ways for students to apply the core concepts of energy through engineering practices such as building and testing prototypes to meet design criteria, planning and carrying out investigations, collecting and interpreting data, optimizing a system design, and collaborating with other research groups. The fundamental concepts presented in this unit serve as a good foundation for future lessons on energy technologies and electricity production.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Eric Anderson, Jeff Kessler, Irene Zhao
RESOURCE GK-12 Program,
Date Added:
10/14/2015
Exploring Energy: Energy Conversion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of energy conversion, and how energy transfers from one form, place or object to another. They learn that energy transfers can take the form of force, electricity, light, heat and sound and are never without some energy "loss" during the process. Two real-world examples of engineered systems light bulbs and cars are examined in light of the law of conservation of energy to gain an understanding of their energy conversions and inefficiencies/losses. Students' eyes are opened to the examples of energy transfer going on around them every day. Includes two simple teacher demos using a tennis ball and ball bearings. A PowerPoint(TM) presentation and quizzes are provided.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Eric Anderson, Jeff Kessler, Irene Zhao
RESOURCE GK-12 Program,
Date Added:
10/14/2015
Exploring Energy: Kinetic and Potential
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. Further, the concept that energy can be neither created nor destroyed is reinforced, as students see the pervasiveness of energy transfer among its many different forms. A PowerPoint(TM) presentation and post-quiz are provided.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Eric Anderson, Jeff Kessler, Irene Zhao
RESOURCE GK-12 Program,
Date Added:
10/14/2015
Exploring Solar Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the methods engineers have devised for harnessing sunlight to generate power. First, they investigate heat transfer and heat storage through the construction, testing and use of a solar oven. With a lesson focused on photovoltaic cells, students learn the concepts of energy conversion, conservation of energy, current and voltage. By constructing model solar powered cars, students see these conceptual ideas manifested in modern technology. Furthermore, the solar car project provides opportunities to explore a number of other topics, such as gear ratios and simple mechanics. Both of these design and construction projects are examples of engineering design.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Lauren Powell
Rahmin Sarabi
Roni Prucz
Techtronics Program,
Date Added:
09/18/2014
Global Warming: The Physics of the Greenhouse Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

This video segment adapted from NOVA/FRONTLINE examines the greenhouse effect, its role in keeping Earth habitable, and the industrial changes that have led to an increase in the planet's average temperature.

Subject:
Chemistry
Ecology
Environmental Science
Forestry and Agriculture
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
How Sunlight Warms the Earth
Rating
0.0 stars

Kindergarten students associate the sun with light and warmth. This lesson helps them expand this knowledge by getting their hands dirty! They will fill cups with soil, water and rocks and place them in the sun and shade for a while. By finding out how they can tell where a cup has been stored, they will learn how the sun affects Earth's surface.

Subject:
Environmental Science
Life Science
Material Type:
Activity/Lab
Date Added:
05/17/2024
Lesson 1 fourth grade Cultivating Genius framework science How does transferring energy affect our  health?
Unrestricted Use
CC BY
Rating
0.0 stars

This is a collection of three lessons that  can be added to the lessons about energy for fourth graders after the students have created a model of the concept of transfer of energy, before or after they have discussed renewable energy as an option. Skills could be reading a map or a graph and gathering useful information, discussing it and coming up with what the information meant. Intelligence was another pursuit. Intelligence meant more than knowing things. It meant knowing things and being able to apply it to the real world as useful information and action. As you learn something, you are also aware of yourself and those around you. Knowledge is intelligence when it can be used for good in the community. It can be useful for everyone and your job is to help apply it and share it with others with this in mind. Write these two pursuits on the board and a quick definition or a student created definition.

Subject:
Character Education
Civics and Government
Elementary Education
Environmental Science
Physics
Material Type:
Lesson
Author:
The genius group from Madison Wisconsin
Date Added:
07/31/2022
Let's Get Breezy!
Read the Fine Print
Educational Use
Rating
0.0 stars

With the assistance of a few teacher demonstrations (online animation, using a radiometer and rubbing hands), students review the concept of heat transfer through convection, conduction and radiation. Then they apply an understanding of these ideas as they use wireless temperature probes to investigate the heating capacity of different materials sand and water under heat lamps (or outside in full sunshine). The experiment models how radiant energy drives convection within the atmosphere and oceans, thus producing winds and weather conditions, while giving students the hands-on opportunity to understand the value of remote-sensing capabilities designed by engineers. Students collect and record temperature data on how fast sand and water heat and cool. Then they create multi-line graphs to display and compare their data, and discuss the need for efficient and reliable engineer-designed tools like wireless sensors in real-world applications.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Constance Garza, Mounir Ben Ghalia
RET-ENET Program, Electrical Engineering Department,
Date Added:
10/14/2015
Naked Egg Drop
Read the Fine Print
Educational Use
Rating
0.0 stars

Student pairs experience the iterative engineering design process as they design, build, test and improve catching devices to prevent a "naked" egg from breaking when dropped from increasing heights. To support their design work, they learn about materials properties, energy types and conservation of energy. Acting as engineering teams, during the activity and competition they are responsible for design and construction planning within project constraints, including making engineering modifications for improvement. They carefully consider material choices to balance potentially competing requirements (such as impact-absorbing and low-cost) in the design of their prototypes. They also experience a real-world transfer of energy as the elevated egg's gravitational potential energy turns into kinetic energy as it falls and further dissipates into other forms upon impact. Pre- and post-activity assessments and a scoring rubric are provided. The activity scales up to district or regional egg drop competition scale. As an alternative to a ladder, detailed instructions are provided for creating a 10-foot-tall egg dropper rig.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Lauren Jabusch
RESOURCE GK-12 Program,
Date Added:
10/14/2015
Off the Grid (Lesson)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn and discuss the advantages and disadvantages of renewable and non-renewable energy sources. They also learn about our nation's electric power grid and what it means for a residential home to be "off the grid."

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
09/18/2014
One Path
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that charge movement through a circuit depends on the resistance and arrangement of the circuit components. In a hands-on activity, students build and investigate the characteristics of series circuits. In another activity, students design and build a flashlight.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Carleigh Samson
Daria Kotys-Schwartz
Denise Carlson
Integrated Teaching and Learning Program,
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
09/18/2014
Power Your House with Water
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers design devices that use water to generate electricity by building model water turbines and measuring the resulting current produced in a motor. Student teams work through the engineering design process to build the turbines, analyze the performance of their turbines and make calculations to determine the most suitable locations to build dams.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
Power Your House with Wind
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers harness the energy of the wind to produce power by following the engineering design process as they prototype two types of wind turbines and test to see which works best. Students also learn how engineers decide where to place wind turbines, and the advantages and disadvantages to using wind power compared to other non-renewable energy sources.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
Solar Sails: The Future of Space Travel
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, define, ideate, prototype, test, redesign—to design and test small-scale solar sails for satellites and space probes. During the process, learn about Newton’s laws of motion and the transfer of energy from wave energy to mechanical energy. A student activity worksheet is provided.

Subject:
Career and Technical Education
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder
Matthew Bentley
Date Added:
10/10/2017
Thermal Energy, Fall 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is taught in four main parts. The first is a review of fundamental thermodynamic concepts (e.g. energy exchange in propulsion and power processes), and is followed by the second law (e.g. reversibility and irreversibility, lost work). Next are applications of thermodynamics to engineering systems (e.g. propulsion and power cycles, thermo chemistry), and the course concludes with fundamentals of heat transfer (e.g. heat exchange in aerospace devices)

Subject:
Earth and Space Science
Geology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Spakovszky, Zoltan S.
Date Added:
01/01/2002