Students learn about the separation techniques of sedimentation and centrifugation and investigate …
Students learn about the separation techniques of sedimentation and centrifugation and investigate whether blood is a homogeneous or a heterogeneous mixture. Working in groups as if they are biomedical researchers, they employ the scientific method and make observations about the known characteristics of urine, milk and blood. They probe further by analyzing research on the properties and fractionation modes of blood. As students learn about certain strange characteristics with the fractionation behavior of blood, they formulate hypotheses on the unique nature of blood. Using provided materials âolive oil, tomato juice and petroleum jellyâthey design an experiment and construct a blood model. They test their hypotheses by conducting experiments on the blood model, and then propose theories for the nature of blood as a mixtureâarriving at the theory of mixture dualism in bloodâthat blood is a complex mixture system. An activity-guiding handout and PowerPoint® presentation are provided for this student-directed, project-based activity.
Through three lessons and their four associated activities, students are introduced to …
Through three lessons and their four associated activities, students are introduced to concepts related to mixtures and solutions. Students consider how mixtures and solutions and atoms and molecules can influence new technologies developed by engineers. To begin, students explore the fundamentals of atoms and their structures. The building blocks of matter (protons, electrons, neutrons) are covered in detail. The next lesson examines the properties of elements and the periodic table one method of organization for the elements. The concepts of physical and chemical properties are also reviewed. Finally, the last lesson introduces the properties of mixtures and solutions. A comparison of different mixtures and solutions, their properties and their separation qualities are explored.
The application of engineering principles is explored in the creation of mobiles. …
The application of engineering principles is explored in the creation of mobiles. As students create their own mobiles, they take into consideration the forces of gravity and convection air currents. They learn how an understanding of balancing forces is important in both art and engineering design.
Students learn about the advantages and disadvantages of the greenhouse effect. They …
Students learn about the advantages and disadvantages of the greenhouse effect. They construct their own miniature greenhouses and explore how their designs take advantage of heat transfer processes to create controlled environments. They record and graph measurements, comparing the greenhouse indoor and outdoor temperatures over time. Students are also introduced to global issues such as greenhouse gas emissions and their relationship to global warming.
Students use provided materials to design and build prototype artificial heart valves. …
Students use provided materials to design and build prototype artificial heart valves. Their functioning is demonstrated using water to simulate the flow of blood through the heart. Upon completion, teams demonstrate their fully functional prototypes to the rest of the class, along with a pamphlet that describes the device and how it works.
Students investigate the ways in which ancient technologies six types of simple …
Students investigate the ways in which ancient technologies six types of simple machines and combinations are used to construct modern buildings. As they work together to solve a design problem (designing and building a modern structure), they brainstorm ideas, decide on a design, and submit it to a design review before acquiring materials to create it (in this case, a mural depicting it). Emphasis is placed on cooperative, creative teamwork and the steps of the engineering design process.
Students make Moebius strips and use them to demonstrate the interconnectedness of …
Students make Moebius strips and use them to demonstrate the interconnectedness of an environment. They explore the natural cycles water, oxygen/carbon dioxide, carbon, nitrogen that exist within the environment.
Students work as engineers to learn about the properties of molecules and …
Students work as engineers to learn about the properties of molecules and how they move in 3D space through the use of LEGO MINDSTORMS(TM) NXT robotics. They design and build molecular models and use different robotic sensors to control the movement of the molecular simulations. Students learn about the size of atoms, Newman projections, and the relationship of energy and strain on atoms. This unique modular modeling activity is especially helpful in providing students with a spatial and tactile understanding of how molecules behave.
Students learn about the Earth's only natural satellite, the Moon. They discuss …
Students learn about the Earth's only natural satellite, the Moon. They discuss the Moon's surface features and human exploration. They also learn about how engineers develop technologies to study and explore the Moon, which also helps us learn more about the Earth.
Students learn why and how motion occurs and what governs changes in …
Students learn why and how motion occurs and what governs changes in motion, as described by Newton's three laws of motion. They gain hands-on experience with the concepts of forces, changes in motion, and action and reaction. In an associated literacy activity, students design a behavioral survey and learn basic protocol for primary research, survey design and report writing.
Mechanical energy is the most easily understood form of energy for students. …
Mechanical energy is the most easily understood form of energy for students. When there is mechanical energy involved, something moves. Mechanical energy is a very important concept to understand. Engineers need to know what happens when something heavy falls from a long distance changing its potential energy into kinetic energy. Automotive engineers need to know what happens when cars crash into each other, and why they can do so much damage, even at low speeds! Our knowledge of mechanical energy is used to help design things like bridges, engines, cars, tools, parachutes, and even buildings! In this lesson, students will learn how the conservation of energy applies to impact situations such as a car crash or a falling object.
This lesson covers the topic of muscles. Students learn about the three …
This lesson covers the topic of muscles. Students learn about the three different types of muscles in the human body and the effects of microgravity on muscles. Students also learn how astronauts need to exercise in order to lessen muscle atrophy in space. Students discover what types of equipment engineers design to help the astronauts exercise while in space.
This activity helps students understand the significance of programming and also how …
This activity helps students understand the significance of programming and also how the LEGO MINDSTORMS(TM) NXT robot's sensors assist its movement and make programming easier. Students compare human senses to robot sensors, describing similarities and differences.
In a class demonstration, students observe a simple water cycle model to …
In a class demonstration, students observe a simple water cycle model to better understand its role in pollutant transport. This activity shows one way in which pollution is affected by the water cycle; it simulates a point source of pollution in a lake and the resulting environmental consequences.
Students are introduced to the parameters of an engineering challenge in which …
Students are introduced to the parameters of an engineering challenge in which their principal has asked them to devise an invisible security system to cost-effectively protect a treasured mummified troll, while still allowing for visitor viewing during the day. Students generate ideas for solving the grand challenge, first independently, then in small groups, and finally, compiled as a class.
This activity helps students learn about the three different types of muscles …
This activity helps students learn about the three different types of muscles and how outer space affects astronauts' muscles. They will discover how important it is for astronauts to get adequate exercise both on Earth and in outer space. Also, through the design of their own microgravity exercise machine, students learn about the exercise machines that engineers design specifically for astronaut use.
Students are introduced to the field of biomechanics and how the muscular …
Students are introduced to the field of biomechanics and how the muscular system produces human movement. They learn the importance of the muscular system in our daily lives, why it is important to be able to repair muscular system injuries and how engineering can help.
Students are introduced to the concept of the image of music. After …
Students are introduced to the concept of the image of music. After listening to a song, they draw images of it by deciding where different musical instruments were placed during recording. They further investigate audio engineering by modeling the position of microphones over a drum set to create a desired musical image.
Students' understanding of how robotic touch sensors work is reinforced through a …
Students' understanding of how robotic touch sensors work is reinforced through a hands-on design challenge involving LEGO MINDSTORMS(TM) NXT intelligent bricks, motors and touch sensors. They learn programming skills and logic design in parallel as they program robot computers to play sounds and rotate a wheel when a touch sensor is pressed, and then produce different responses if a different touch sensor is activated. Students see first-hand how robots can take input from sensors and use it to make decisions to move as programmed, including simultaneously moving a motor and playing music. A PowerPoint® presentation and pre/post quizzes are provided.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.