Updating search results...

Search Resources

366 Results

View
Selected filters:
  • TeachEngineering
Designing a Sustainable Guest Village in the Saguaro National Park
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to design a permanent guest village within the Saguaro National Park in Arizona. The design must provide a true desert experience to visitors while emphasizing sustainable design, protection of the natural environment, and energy and resource conservation. To successfully address and respond to this challenge, students must acquire an understanding of desert ecology, environmental limiting factors, species adaptations and resource utilization. Following theintroduction, students generate ideas and consider the knowledge required to complete the challenge. The lectures and activities that follow serve to develop this level of comprehension. To introduce the concepts of healthy ecosystems, biomimetics and the importance of sustainable environmental design, students watch three video clips of experts. These clips provide direction for student research and challenge design solutions.

Subject:
Career and Technical Education
Ecology
Environmental Science
Forestry and Agriculture
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Megan Johnston
TeachEngineering.org
VU Bioengineering RET Program,
Wendy J. Holmgren
Date Added:
09/18/2014
Destination Outer Space
Read the Fine Print
Educational Use
Rating
0.0 stars

Students acquire a basic understanding of the science and engineering of space travel as well as a brief history of space exploration. They learn about the scientists and engineers who made space travel possible and briefly examine some famous space missions. Finally, they learn the basics of rocket science (Newton's third law of motion), the main components of rockets and the U.S. space shuttle, and how engineers are involved in creating and launching spacecraft.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Denise W. Carlson
Geoff Hill
Integrated Teaching and Learning Program,
Jessica Butterfield
Jessica Todd
Sam Semakula
TeachEngineering.org
Date Added:
09/18/2014
Detail Drawings: Communicating with Engineers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to detail drawings and the importance of clearly documenting and communicating their designs. They are introduced to the American National Standards Institute (ANSI) Y14.5 standard, which controls how engineers communicate and archive design information. They are introduced to standard paper sizes and drawing view conventions, which are major components of the Y14.5 standard.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry, Stephanie Rivale, Denise W. Carlson
Integrated Teaching and Learning Program,
TeachEngineering.org
Date Added:
09/18/2014
Determining Densities
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use two different methods to determine the densities of a variety of materials and objects. The first method involves direct measurement of the volumes of objects that have simple geometric shapes. The second is the water displacement method, used to determine the volumes of irregularly shaped objects. After the densities are determined, students create x-y scatter graphs of mass versus volume, which reveal that objects with densities less than water (floaters) lie above the graph's diagonal (representing the density of water), and those with densities greater than water (sinkers) lie below the diagonal.

Subject:
Education
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Engineering K-PhD Program,
Mary R. Hebrank (project writer and consultant)
Date Added:
10/14/2015
Disassemble a Click Pen
Read the Fine Print
Educational Use
Rating
0.0 stars

Students disassemble and analyze retractable pens. Through the process of "reverse engineering," they learn how the ink pens work.

Subject:
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Center for Engineering Educational Outreach,
TeachEngineering.org
Date Added:
09/18/2014
Discovering Phi: The Golden Ratio
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover the mathematical constant phi, the golden ratio, through hands-on activities. They measure dimensions of "natural objects"—a star, a nautilus shell and human hand bones—and calculate ratios of the measured values, which are close to phi. Then students learn a basic definition of a mathematical sequence, specifically the Fibonacci sequence. By taking ratios of successive terms of the sequence, they find numbers close to phi. They solve a squares puzzle that creates an approximate Fibonacci spiral. Finally, the instructor demonstrates the rule of the Fibonacci sequence via a LEGO® MINDSTORMS® NXT robot equipped with a pen. The robot (already created as part of the companion activity, The Fibonacci Sequence & Robots) draws a Fibonacci spiral that is similar to the nautilus shape.

Subject:
Career and Technical Education
Mathematics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS GK-12 Program,
Nicole Abaid
TeachEngineering.org
Date Added:
09/18/2014
Do You See What I See?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the concept of optical character recognition (OCR) in a problem-solving environment. They research OCR and OCR techniques and then apply those methods to the design challenge by developing algorithms capable of correctly "reading" a number on a typical high school sports scoreboard. Students use the structure of the engineering design process to guide them to develop successful algorithms. In the associated activity, student groups implement, test and revise their algorithms. This software design lesson/activity set is designed to be part of a Java programming class.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Derek Babb
IMPART RET Program,
TeachEngineering.org
Date Added:
09/18/2014
Does It Work? Test and Test Again
Read the Fine Print
Educational Use
Rating
0.0 stars

Testing is critical to any design, whether the creation of new software or a bridge across a wide river. Despite risking the quality of the design, the testing stage is often hurried in order to get products to market. In this lesson, students focus on the testing phase of the software/systems design process. They start by exploring existing examples of program testing using the CodingBat website, which contains a series of problems and challenges that students solve using the Java programming language. Working in teams, students practice writing test cases for other groups' code, and then write test cases for a program before writing the program itself.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
IMPART RET Program, College of Information Science & Technology,
Ryan Stejskal, Brian Sandall, Janet Yowell
TeachEngineering.org
Date Added:
09/18/2014
Don't Confuse Your Qs!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the difference between qualitative and quantitative measurements and observations. By describing objects both qualitatively and quantitatively, they learn that both types of information are required for complete descriptions. Students discuss the characteristics of many objects, demonstrating how engineers use both qualitative and quantitative information in product design.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Megan Schroeder
Date Added:
10/14/2015
Drawing Designs in Detail
Read the Fine Print
Educational Use
Rating
0.0 stars

Students practice creating rudimentary detail drawings. They learn how engineers communicate the technical information about their designs using the basic components of detail drawings. They practice creating their own drawings of a three-dimensional block and a special LEGO piece, and then make 3D sketches of an unknown object using only the information provided in its detail drawing.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry, Brandi Briggs, Stephanie Rivale, Denise W. Carlson
Integrated Teaching and Learning Program,
TeachEngineering.org
Date Added:
09/18/2014
Drawing Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro (Author), Glencliff High School, Nashville
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
Earth Impact
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity poses the question: What would happen if a meteor or comet impacted Earth? Students simulate an impact in a container of sand using various-sized rocks, all while measuring, recording and graphing results and conclusions. Then students brainstorm ways to prevent an object from hitting the Earth.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Integrated Teaching and Learning Program,
Janet Yowell
Karen King
Date Added:
10/14/2015
Earthquakes Living Lab: Locating Earthquakes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around the planet to identify where earthquakes occur and look for trends in earthquake activity. They explore where and why earthquakes occur, learning about faults and how they influence earthquakes. Looking at the interactive maps and the data, students use Microsoft® Excel® to conduct detailed analysis of the most-recent 25 earthquakes; they calculate mean, median, mode of the data set, as well as identify the minimum and maximum magnitudes. Students compare their predictions with the physical data, and look for trends to and patterns in the data. A worksheet serves as a student guide for the activity.

Subject:
Earth and Space Science
Geology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Civil and Environmental Engineering Department, Colorado School of Mines
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
10/13/2017
Eat Iron?!!
Read the Fine Print
Educational Use
Rating
0.0 stars

To gain an understanding of mixtures and the concept of separation of mixtures, students use strong magnets to find the element of iron in iron-fortified breakfast cereal flakes. Through this activity, they see how the iron component of this heterogeneous mixture (cereal) retains its properties and can thus be separated by physical means.

Subject:
Career and Technical Education
Chemistry
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
NSF GK-12 and Research Experience for Teachers (RET) Programs,
Parnia Mohammadi
Roberto Dimaliwat
TeachEngineering.org
Date Added:
09/18/2014
Element, Mixture, Compound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain a better understanding of the different types of materials as pure substances and mixtures and learn to distinguish between homogeneous and heterogeneous mixtures by discussing an assortment of example materials they use and encounter in their daily lives.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Parnia Mohammadi
Roberto Dimaliwat
TeachEngineering.org
Date Added:
09/18/2014
Energy Forms, States and Conversions
Read the Fine Print
Educational Use
Rating
0.0 stars

The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.

Subject:
Career and Technical Education
Chemistry
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Office of Educational Partnerships,
Susan Powers
Susan Powers, Jan DeWaters, and a number of Clarkson and St. Lawrence University students in the K-12 Project Based Learning Partnership Program
TeachEngineering.org
Date Added:
09/18/2014
Engineering Ethics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze an assortment of popular inventions to determine whom they are intended to benefit, who has access to them, who might be harmed by them, and who is profiting by them. Then they re-imagine the devices in a way that they believe would do more good for humanity. During the first 90-minute class period, they evaluate and discuss designs in small groups and as a class, examining their decision-making criteria. Collectively, they decide upon a definition of "ethical" that they use going forward. During the second period, students apply their new point-of-view to redesign popular inventions (on paper) and persuasively present them to the class, explaining how they meet the class standards for ethical designs. Two PowerPoint® presentations, a worksheet and grading rubric are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Mejia
Amy A. Wilson
Christina Sias
NSF DRK-12 Project, College of Engineering, Utah State University
Date Added:
10/13/2017
Engineering Nature: DNA Visualization and Manipulation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to genetic techniques such as DNA electrophoresis and imaging technologies used for molecular and DNA structure visualization. In the field of molecular biology and genetics, biomedical engineering plays an increasing role in the development of new medical treatments and discoveries. Engineering applications of nanotechnology such as lab-on-a-chip and deoxyribonucleic acid (DNA) microarrays are used to study the human genome and decode the complex interactions involved in genetic processes.

Subject:
Career and Technical Education
Genetics
Life Science
Physical Science
Physics
Technology and Engineering
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
TeachEngineering.org
Date Added:
09/18/2014
Engineering Out of Harry Situations: The Science Behind Harry Potter
Read the Fine Print
Educational Use
Rating
0.0 stars

Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.

Subject:
Career and Technical Education
Chemistry
Genetics
Life Science
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Rachel Howser
TeachEngineering.org
Date Added:
09/18/2014