Updating search results...

Search Resources

238 Results

View
Selected filters:
Flow Rates of Faucets and Rivers
Read the Fine Print
Educational Use
Rating
0.0 stars

In the Flow Rate Experiment, students perform hands-on experiments with a common faucet, as well as work with the Engineering Our Water Living Lab to gain a better understanding of flow rate and how it pertains to engineering and applied science. Students calculate the flow rate of a faucet for three different levels (quarter blast, half blast, and full blast). Building on these calculations, students hypothesize about the flow rate in a nearby river, and then use the Engineering Our Water Living Lab to check their hypothesis. For this lesson to be effective, your students need to have a visual feel for the flow in a nearby river.

Subject:
Career and Technical Education
Ecology
Environmental Science
Forestry and Agriculture
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bobby Rinehart
Civil and Environmental Engineering Department,
Karen Johnson
Mike Mooney
TeachEngineering.org
Date Added:
09/18/2014
Fluid Power Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the fundamental concepts important to fluid power, which includes both pneumatic (gas) and hydraulic (liquid) systems. Both systems contain four basic components: reservoir/receiver, pump/compressor, valve, cylinder. Students learn background information about fluid power—both pneumatic and hydraulic systems—including everyday applications in our world (bulldozers, front-end loaders, excavators, chair height lever adjustors, door closer dampers, dental drills, vehicle brakes) and related natural laws. After a few simple teacher demos, they learn about the four components in all fluid power systems, watch two 26-minute online videos about fluid power, complete a crossword puzzle of fluid power terms, and conduct a task card exercise. This prepares them to conduct the associated hands-on activity, using the Portable Fluid Power Demonstrator (teacher-prepared kits) to learn more about the properties of gases and liquids in addition to how forces are transmitted and multiplied within these systems.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Bettag
Center for Compact and Efficient Fluid Power, College of Agriculture and Biological Engineering,
John H. Lumkes
Jose Garcia
Nicki Schrank
Phong Pham
TeachEngineering.org
Date Added:
09/18/2014
For Those Back Home...
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review information learned during the past five lessons and activities of the Introduction to Engineering unit. Working in teams, they create flyers and short quizzes about various types of engineering to share with the class and collect into a "Olympic Engineering Binder" for the class to keep.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Katherine Beggs
TeachEngineering.org
Date Added:
09/18/2014
Forces and Graphing
Read the Fine Print
Educational Use
Rating
0.0 stars

Use this activity to explore forces acting on objects, practice graphing experimental data, and introduce the algebra concepts of slope and intercept of a line. A wooden 2 x 4 beam is set on top of two scales. Students learn how to conduct an experiment by applying loads at different locations along the beam, recording the exact position of the applied load and the reaction forces measured by the scales at each end of the beam. In addition, students analyze the experiment data with the use of a chart and a table, and model/graph linear equations to describe relationships between independent and dependent variables.

Subject:
Career and Technical Education
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
GK-12 Program, Center for Engineering and Computing Education, College of Engineering and Information Technology,
Ivanka Todorova
Jed Lyons
John Brader
TeachEngineering.org
Veronica Addison
Date Added:
09/18/2014
Forces on the Human Molecule
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct several simple lab activities to learn about the five fundamental load types that can act on structures: tension, compression, shear, bending and torsion. In this activity, students play the role of molecules in a beam that is subject to various loading schemes.

Subject:
Career and Technical Education
Chemistry
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
K-12 Outreach Office,
TeachEngineering.org
Date Added:
09/18/2014
Forms of Linear Equations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about four forms of equations: direct variation, slope-intercept form, standard form and point-slope form. They graph and complete problem sets for each, converting from one form of equation to another, and learning the benefits and uses of each.

Subject:
Algebra
Career and Technical Education
Mathematics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
TeachEngineering.org
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
Friction Force
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force of friction. Specifically, they observe how different surfaces in contact result in different frictional forces. A LEGO robot is constructed to pull a two-wheeled trailer made of LEGO parts. The robot is programmed to pull the trailer 10 feet and trial runs are conducted on smooth and textured surfaces. The speed and motor power of the robot is kept constant in all trials so students observe the effect of friction between various combinations of surfaces and trailer wheels. To apply what they learn, students act as engineers and create the most effective car by designing the most optimal tires for given surface conditions.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS GK-12 Program,
Akim Faisal
TeachEngineering.org
Date Added:
09/18/2014
From Sunlight to Electric Current
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson will first explore the concept of current in electrical circuits. Current will be defined as the flow of electrons. Photovoltaic (PV) cell properties will then be introduced. Generally constructed of silicon, photovoltaic cells contain a large number of electrons BUT they can be thought of as "frozen" in their natural state. A source of energy is required to "free" these electrons if we wish to create current. Light from the sun provides this energy. This will lead to the principle of "Conservation of Energy." Finally, with a basic understanding of the circuits through Ohm's law, students will see how the energy from the sun can be used to power everyday items, including vehicles. This lesson utilizes the engineering design activity of building a solar car to help students learn these concepts.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Rahmin Sarabi
Roni Prucz
TeachEngineering.org
Techtronics Program,
Date Added:
09/18/2014
GPS on the Move
Read the Fine Print
Educational Use
Rating
0.0 stars

During a scavenger hunt and an art project, students learn how to use a handheld GPS receiver for personal navigation. Teachers can request assistance from the Institute of Navigation to find nearby members with experience in using GPS and in locating receivers to use.

Subject:
Career and Technical Education
Ecology
Forestry and Agriculture
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Penny Axelrad
TeachEngineering.org
Date Added:
09/18/2014
Getting it Right!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will investigate error. As shown in earlier activities from navigation lessons 1 through 3, without an understanding of how errors can affect your position, you cannot navigate well. Introducing accuracy and precision will develop these concepts further. Also, students will learn how computers can help in navigation. Often, the calculations needed to navigate accurately are time consuming and complex. By using the power of computers to do calculations and repetitive tasks, one can quickly see how changing parameters likes angles and distances and introducing errors will affect their overall result.

Subject:
Career and Technical Education
Geometry
Mathematics
Technology and Engineering
Trigonometry
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
TeachEngineering.org
Date Added:
09/18/2014
Getting to the Point
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn how to determine location by triangulation. We describe the process of triangulation and practice finding your location on a worksheet, in the classroom, and outdoors.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
TeachEngineering.org
Date Added:
09/18/2014
Go Public: Osteoporosis Brochure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will answer the Challenge Question and use the acquired learning from Lesson 1, "Fix the Hip Challenge" and Lesson 2, "Skeletal System Overview"to construct an informative brochure addressing osteoporosis and the role biomedical engineering plays in diagnosing and preventing this disease.

Subject:
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Morgan Evans (Primary Author)
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
A Good Foundation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the effects of regional geology on bridge foundation, including the variety of soil conditions found beneath foundations. They learn about shallow and deep foundations, as well as the concepts of bearing pressure and settlement.

Subject:
Career and Technical Education
Earth and Space Science
Ecology
Education
Forestry and Agriculture
Geology
Life Science
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denali Lander
Denise W. Carlson
Integrated Teaching and Learning Program, College of Engineering,
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
TeachEngineering.org
Date Added:
09/18/2014
The Grand Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces the MRI Safety Grand Challenge question. Students are asked to write journal responses to the question and brainstorm what information they will need to answer the question. The ideas are shared with the class and recorded. Students then watch a video interview with a real life researcher to gain a professional perspective on MRI safety and brainstorm any additional ideas. The associated activity provides students the opportunity to visualize magnetic fields.

Subject:
Career and Technical Education
Life Science
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
TeachEngineering.org
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
The Grand Challenge: Simulating Human Vision
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the Robotics Peripheral Vision Grand Challenge question. They are asked to write journal responses to the question and brainstorm what information they require to answer the question. Their ideas are shared with the class and recorded. Then, students share their ideas with each other and brainstorm any additional ideas. Next, students draw a basis for the average peripheral vision of humans and then compare that range to the range of two different focal lengths in a camera. Through the associated activity provides, students see the differences between human and computer vision.

Subject:
Career and Technical Education
Life Science
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Mark Gonyea
Rachelle Klinger
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
Graph Theory in Drama
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use graph theory to create social graphs for their own social networks and apply what learn to create a graph representing the social dynamics found in a dramatic text. Students then derive meaning based on what they know about the text from the graphs they created. Students learn graph theory vocabulary, as well as engineering applications of graph theory.

Subject:
Career and Technical Education
Mathematics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
IMPART RET Program, College of Information Science & Technology,
Ramsey Young, Brian Sandall
TeachEngineering.org
Date Added:
09/18/2014
Graphing Equations on the Cartesian Plane: Slope
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about an important characteristic of lines: their slopes. Slope can be determined either in graphical or algebraic form. Slope can also be described as positive, negative, zero or undefined. Students get an explanation of when and how these different types of slope occur. Finally, they learn how slope relates to parallel and perpendicular lines. When two lines are parallel, they have the same slope and when they are perpendicular their slopes are negative reciprocals of one another.

Subject:
Algebra
Career and Technical Education
Mathematics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey Mckelvey
TeachEngineering.org
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
Graphing Your Social Network
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze their social networks using graph theory. They gather data on their own social relationships, either from Facebook interactions or the interactions they have throughout the course of a day, recording it in Microsoft Excel and using Cytoscape (a free, downloadable application) to generate social network graphs that visually illustrate the key persons (nodes) and connections between them (edges). The nodes in the Cytoscape graphs are color-coded and sized according to the importance of the node (in this activity, nodes are people in students' social networks). After the analysis, the graphs are further examined to see what can be learned from the visual representation. Students gain practice with graph theory vocabulary, including node, edge, betweeness centrality and degree on interaction, and learn about a range of engineering applications of graph theory.

Subject:
Career and Technical Education
Mathematics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
IMPART RET Program, College of Information Science & Technology,
Ramsey Young, Brian Sandall
TeachEngineering.org
Date Added:
09/18/2014
The Growling Stomach
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, the students will investigate what types of plants and insects they could eat to survive in the Amazon. They will research various plants and/or insects and identify characteristics that make them edible or useful for the trip. The students will create posters and present their findings to the class.

Subject:
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Adventure Engineering,
TeachEngineering.org
Date Added:
09/18/2014