In this problem-based learning (PBL) activity, students take on the role of …
In this problem-based learning (PBL) activity, students take on the role of a student research scientist and explore the role of solar energy in determining climate. Students conduct experiments to determine the role of albedo in surface warming by investigating the temperature of a variety of surfaces in the environment. The activity should be conducted on a sunny day. Materials required for the investigation include thermometers and paper cups. The lesson is supported by teacher notes, answer key, glossary and an appendix with information about using PBL in the classroom. This is the first of three activities in Investigating the Climate System: Energy, a Balancing Act.
In this video segment adapted from the International Institute for Sustainable Development, …
In this video segment adapted from the International Institute for Sustainable Development, Inuit observers describe how their traditional understanding of weather patterns is being challenged by unpredictable weather behaviors.
In this video segment adapted from the College of Menominee Nation, learn …
In this video segment adapted from the College of Menominee Nation, learn about the emergence of invasive forest species and diseases and their possible impact on the Menominee tribal forest.
The video is a visual of the water cycle and what it …
The video is a visual of the water cycle and what it would look like. It can be stopped so that the students can get more information of each part of the cycle. This can be used as a beginning lesson to start to teach the water cycle.
Students use a thermal process approach to design, build and test a …
Students use a thermal process approach to design, build and test a small-scale desalination plant that is capable of significantly removing the salt content from a saltwater solution. Students use a saltwater circuit to test the efficiency of their model desalination plant and learn how the water cycle is the basis for the thermal processes that drive their desalination plant.
Students learn about floods, discovering that different types of floods occur from …
Students learn about floods, discovering that different types of floods occur from different water sources, but primarily from heavy rainfall. While floods occur naturally and have benefits such as creating fertile farmland, students learn that with the increase in human population in flood-prone areas, floods are become increasingly problematic. Both natural and manmade factors contribute to floods. Students learn what makes floods dangerous and what engineers design to predict, control and survive floods.
Students learn about the importance of dams by watching a video that …
Students learn about the importance of dams by watching a video that presents historical and current information on dams, as well as descriptions of global water resources and the hydrologic cycle. Students also learn about different types of dams, all designed to resist the forces on dams. (If the free, 15-minute "Water and Dams in Today's World" video cannot be obtained in time, the lesson can still be taught. See the Additional Multimedia Support section for how to obtain the DVD or VHS videotape, or a PowerPoint presentation with similar content [also attached].)
Students learn about the water cycle and its key components. First, they …
Students learn about the water cycle and its key components. First, they learn about the concept of a watershed and why it is important in the context of engineering hydrology. Then they learn how we can use the theory of conservation of mass to estimate the amount of water that enters a watershed (precipitation, groundwater flowing in) and exits a watershed (evaporation, runoff, groundwater out). Finally, students learn about runoff and how we visualize runoff in the form of hydrographs.
In this scenario-based activity, students design ways to either clean a water …
In this scenario-based activity, students design ways to either clean a water source or find a new water source, depending on given hypothetical family scenarios. They act as engineers to draw and write about what they could do to provide water to a community facing a water crisis. They also learn the basic steps of the engineering design process.
Students will test the percolation rates of 6 different soil samples. Three …
Students will test the percolation rates of 6 different soil samples. Three of the samples are measured sand and clay and three are collected from the schoolyard and wetland.
Students learn about the Earth's water cycle, especially about evaporation. Once a …
Students learn about the Earth's water cycle, especially about evaporation. Once a dam is constructed, its reservoir becomes a part of the region's natural hydrologic cycle by receiving precipitation, storing runoff water and evaporating water. Although almost impossible to see, and not as familiar to most people as precipitation, evaporation plays a critical role in the hydrologic cycle, and is especially of interest to engineers designing new dams and reservoirs, such as those that Splash Engineering is designing for Thirsty County.
This short demonstration will open students' eyes to the distribution of various …
This short demonstration will open students' eyes to the distribution of various water sources on our Earth, but also the limited amount of fresh water for our daily use.
In this video segment adapted from United Tribes Technical College, listen as …
In this video segment adapted from United Tribes Technical College, listen as six Native American students share their concerns, hopes, and knowledge about climate change.
In this video segment adapted from United Tribes Technical College, listen as …
In this video segment adapted from United Tribes Technical College, listen as six Native American students share their concerns, hopes, and knowledge about climate change.
The engineers at Splash Engineering (the students) have been commissioned by Thirsty …
The engineers at Splash Engineering (the students) have been commissioned by Thirsty County to conduct a study of evaporation and transpiration in their region. During one week, students observe and measure (by weight) the ongoing evaporation of water in pans set up with different variables, and then assess what factors may affect evaporation. Variables include adding to the water an amount of soil and an amount of soil with growing plants.
This resource will use the 5E model to explore the water cycle. …
This resource will use the 5E model to explore the water cycle. For engage students will start by drawing their interpretation of the water cycle. The explore segment has students travel through the life of a drop of water by visiting various stations that represent locations where water exists. Students will create a model of their experience that will be shared with others in the explain. During the explain students will share their models, participate in a group discussion and reflect back on their previous drawings of the water cycle. In the elaborate/evaluate students students will draw revised models.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.