This Check Your Readiness Rubric is used in conjunction with the Illustrative …
This Check Your Readiness Rubric is used in conjunction with the Illustrative Mathematics Curriculum. It breaks down each question by identifying the Essential Standard associated and then defining what an Advanced, Proficient, Basic or Below Basic student response would entail. This rubric can then be utilized to determine levels of prerequisite skills when beginning a new unit and allow for placement of interventions.
This End of Unit Assessment Rubric is used in conjunction with the …
This End of Unit Assessment Rubric is used in conjunction with the Illustrative Mathematics Curriculum. It breaks down each question by identifying the Essential Standard associated and then defining what an Advanced, Proficient, Basic or Below Basic student response would entail. This rubric can then be utilized for students to track progress towards proficiency on each of the grade level standards.
This End of Unit Assessment is used in conjunction with the Illustrative …
This End of Unit Assessment is used in conjunction with the Illustrative Mathematics Curriculum and the Unit 5 End of Unit Assessment Rubric. It breaks down identifying the Essential Standard associated. This assessment should be utilized with the uploaded rubric to track progress towards proficiency on each of the grade level standards.
This Mid-Unit Assessment Rubric is used in conjunction with the Illustrative Mathematics …
This Mid-Unit Assessment Rubric is used in conjunction with the Illustrative Mathematics Curriculum. It breaks down each question by identifying the Essential Standard associated and then defining what an Advanced, Proficient, Basic or Below Basic student response would entail. This rubric can then be utilized for students to track progress towards proficiency on each of the grade level standards.
This Mid-Unit Assessment is used in conjunction with the Illustrative Mathematics Curriculum …
This Mid-Unit Assessment is used in conjunction with the Illustrative Mathematics Curriculum and the Unit 5 Mid-Unit Assessment Rubric. It breaks down identifying the Essential Standard associated. This assessment should be utilized with the uploaded rubric to track progress towards proficiency on each of the grade level standards.
This activity is an inquiry investigation where students gather data on why …
This activity is an inquiry investigation where students gather data on why the Cartesian diver sinks or floats. They then develop a new question and then conduct a new investigation by changing one variable and repeat the altered experiment and record their conclusions.
This Java interactive tool can be used to create dynamic drawings on …
This Java interactive tool can be used to create dynamic drawings on an isometric dot grid, and to explore volume, surface area, and congruence concepts. Users can draw figures using edges, faces, or cubes and can shift, rotate, color, decompose, and view figures in 2‑D or 3‑D with this applet. Instructions on using and exploring with the tool are included on the page. A related multi-lesson unit from Illuminations for middle school students is linked to the side.
In this 5-lesson unit, students engage in measurement activities involving length, area, …
In this 5-lesson unit, students engage in measurement activities involving length, area, volume, time, and weight, using objects, pictures and symbols. Students practice measuring using standard and nonstandard units. Some lessons are introduced using children's literature.
In this three-lesson unit, students participate in activities in which they focus …
In this three-lesson unit, students participate in activities in which they focus on connections between mathematics and children’s literature. Three pieces of literature are used to teach geometry and measurement topics in the mathematics curriculum, i.e. using and describing geometric figures, estimating the volume of an irregular solid, and exploring the need for a standard unit of length. Activity worksheets and ideas for extension are included.
Students learn the metric units engineers use to measure mass, distance (or …
Students learn the metric units engineers use to measure mass, distance (or length) and volume. They make estimations using these units and compare their guesses with actual values. To introduce the concepts, the teacher needs access to a meter stick, a one-liter bottle, a glass container that measures milliliters and a gram scale.
Students learn how volume, viscosity and slope are factors that affect the …
Students learn how volume, viscosity and slope are factors that affect the surface area that lava covers. Using clear transparency grids and liquid soap, students conduct experiments, make measurements and collect data. They also brainstorm possible solutions to lava flow problems as if they were geochemical engineers, and come to understand how the properties of lava are applicable to other liquids.
This lesson plan introduces the properties of mixtures and solutions. A class …
This lesson plan introduces the properties of mixtures and solutions. A class demonstration gives the students the opportunity to compare and contrast the physical characteristics of a few simple mixtures and solutions. Students discuss the separation of mixtures and solutions back into their original components as well as different engineering applications of mixtures and solutions.
What determines the concentration of a solution? Learn about the relationships between …
What determines the concentration of a solution? Learn about the relationships between moles, liters, and molarity by adjusting the amount of solute and solution volume. Change solutes to compare different chemical compounds in water.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En este módulo de 25 días, los estudiantes trabajan con figuras dos y tridimensionales. El volumen se introduce a los estudiantes a través de la exploración concreta de unidades cúbicas y culmina con el desarrollo de la fórmula de volumen para los prismas rectangulares correctos. La segunda mitad del módulo se convierte en extender a los estudiantes la comprensión de las figuras bidimensionales. Los estudiantes combinan el conocimiento previo del área con el conocimiento recién adquirido de la multiplicación por fracción para determinar el área de las figuras rectangulares con longitudes laterales fraccionadas. Luego participan en la construcción práctica de formas bidimensionales, desarrollando una base para clasificar las formas razonando sobre sus atributos. Este módulo llena un vacío entre el trabajo de Grado 4 S con figuras bidimensionales y el trabajo de grado 6 con volumen y área.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In this 25-day module, students work with two- and three-dimensional figures. Volume is introduced to students through concrete exploration of cubic units and culminates with the development of the volume formula for right rectangular prisms. The second half of the module turns to extending students understanding of two-dimensional figures. Students combine prior knowledge of area with newly acquired knowledge of fraction multiplication to determine the area of rectangular figures with fractional side lengths. They then engage in hands-on construction of two-dimensional shapes, developing a foundation for classifying the shapes by reasoning about their attributes. This module fills a gap between Grade 4s work with two-dimensional figures and Grade 6s work with volume and area.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
El módulo 3, que se extiende a tres dimensiones, se basa en la comprensión de los estudiantes de la congruencia en el módulo 1 y la similitud en el módulo 2 para probar fórmulas de volumen para sólidos. Los materiales estudiantiles consisten en las páginas del estudiante para cada lección en el módulo 3. Los materiales listos para la copia son una colección de las evaluaciones del módulo, boletos de salida de la lección y ejercicios de fluidez de los materiales del maestro.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: Module 3, Extending to Three Dimensions, builds on students understanding of congruence in Module 1 and similarity in Module 2 to prove volume formulas for solids. The student materials consist of the student pages for each lesson in Module 3. The copy ready materials are a collection of the module assessments, lesson exit tickets and fluency exercises from the teacher materials.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En el primer tema de este módulo de 15 días, los estudiantes aprenden el concepto de una función y por qué las funciones son necesarias para describir conceptos geométricos y ocurrencias en la vida cotidiana. Una vez que se proporciona una definición formal de una función, los estudiantes consideran funciones de tarifas discretas y continuas y comprenden la diferencia entre los dos. Los estudiantes aplican su conocimiento de las ecuaciones lineales y sus gráficos del módulo 4 a los gráficos de funciones lineales. Los estudiantes inspeccionan la tasa de cambio de funciones lineales y concluyen que la tasa de cambio es la pendiente de la gráfica de una línea. Aprenden a interpretar la ecuación y = mx+b como definir una función lineal cuyo gráfico es una línea. Los estudiantes comparan funciones lineales y sus gráficos y también obtienen experiencia con funciones no lineales. En el segundo y último tema de este módulo, los estudiantes extienden lo que aprendieron en el grado 7 sobre cómo resolver los problemas del mundo real y las matemáticas relacionadas con el volumen de sólidos simples para incluir problemas que requieren las fórmulas para conos, cilindros y esferas.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In the first topic of this 15 day module, students learn the concept of a function and why functions are necessary for describing geometric concepts and occurrences in everyday life. Once a formal definition of a function is provided, students then consider functions of discrete and continuous rates and understand the difference between the two. Students apply their knowledge of linear equations and their graphs from Module 4 to graphs of linear functions. Students inspect the rate of change of linear functions and conclude that the rate of change is the slope of the graph of a line. They learn to interpret the equation y=mx+b as defining a linear function whose graph is a line. Students compare linear functions and their graphs and gain experience with non-linear functions as well. In the second and final topic of this module, students extend what they learned in Grade 7 about how to solve real-world and mathematical problems related to volume from simple solids to include problems that require the formulas for cones, cylinders, and spheres.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
Given an assortment of unknown metals to identify, student pairs consider what …
Given an assortment of unknown metals to identify, student pairs consider what unique intrinsic (aka intensive) metal properties (such as density, viscosity, boiling or melting point) could be tested. For the provided activity materials (copper, aluminum, zinc, iron or brass), density is the only property that can be measured so groups experimentally determine the density of the "mystery" metal objects. They devise an experimental procedure to measure mass and volume in order to calculate density. They calculate average density of all the pieces (also via the graphing method if computer tools area available). Then students analyze their own data compared to class data and perform error analysis. Through this inquiry-based activity, students design their own experiments, thus experiencing scientific investigation and experimentation first hand. A provided PowerPoint(TM) file and information sheet helps to introduce the five metals, including information on their history, properties and uses.
Students find the volume and surface area of a rectangular box (e.g., …
Students find the volume and surface area of a rectangular box (e.g., a cereal box), and then figure out how to convert that box into a new, cubical box having the same volume as the original. As they construct the new, cube-shaped box from the original box material, students discover that the cubical box has less surface area than the original, and thus, a cube is a more efficient way to package things.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.