The application of engineering principles is explored in the creation of mobiles. …
The application of engineering principles is explored in the creation of mobiles. As students create their own mobiles, they take into consideration the forces of gravity and convection air currents. They learn how an understanding of balancing forces is important in both art and engineering design.
Mechanical energy is the most easily understood form of energy for students. …
Mechanical energy is the most easily understood form of energy for students. When there is mechanical energy involved, something moves. Mechanical energy is a very important concept to understand. Engineers need to know what happens when something heavy falls from a long distance changing its potential energy into kinetic energy. Automotive engineers need to know what happens when cars crash into each other, and why they can do so much damage, even at low speeds! Our knowledge of mechanical energy is used to help design things like bridges, engines, cars, tools, parachutes, and even buildings! In this lesson, students will learn how the conservation of energy applies to impact situations such as a car crash or a falling object.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
Build your own system of heavenly bodies and watch the gravitational ballet. …
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
In this lesson designed to enhance literacy skills, an early astronaut's experiences …
In this lesson designed to enhance literacy skills, an early astronaut's experiences teach students that Newton's third law of motion—for every action, there is an equal and opposite reaction—applies both on Earth and in outer space.
Play with one or two pendulums and discover how the period of …
Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.
Play with one or two pendulums and discover how the period of …
Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.
For all of the bodies attached to the many great minds that …
For all of the bodies attached to the many great minds that walk the Institute's halls, in the work that goes on at MIT the body is present as an object of study, but is all but unrecognized as an important dimension of our intelligence and experience. Yet the body is the basis of our experience in the world; it is the very foundation on which cognitive intelligence is built. Using the MIT gymnastics gym as our laboratory, the Physical Intelligence activity will take an innovative, hands-on approach to explore the kinesthetic intelligence of the body as applicable to a wide range of disciplines. Via exercises, activities, readings and discussions designed to excavate our physical experience, we will not only develop balance, agility, flexibility and strength, but a deep appreciation for the inherent unity of mind and body that suggests physical intelligence as a powerful complement to cognitive intelligence.
Physics for Future Presidents Spring, 2006. The title is serious. The official …
Physics for Future Presidents Spring, 2006. The title is serious. The official designation is Physics 10 and is sometimes called qualitative physics -- but this is not trivial physics. You will be learning material that is generally not learned by the physicist until after earning a Ph.D. After every lecture, you should come away with the feeling that what was just covered is important for every world leader to know. Topics covered may vary and may include energy and conservation, radioactivity, nuclear physics, the Theory of Relativity, lasers, explosions, earthquakes, superconductors, and quantum physics.
Students explore the physics utilized by engineers in designing today's roller coasters, …
Students explore the physics utilized by engineers in designing today's roller coasters, including potential and kinetic energy, friction, and gravity. First, students learn that all true roller coasters are completely driven by the force of gravity and that the conversion between potential and kinetic energy is essential to all roller coasters. Second, they also consider the role of friction in slowing down cars in roller coasters. Finally, they examine the acceleration of roller coaster cars as they travel around the track. During the associated activity, the students design, build, and analyze a roller coaster for marbles out of foam tubing.
Students continue to explore the story of building a pyramid, learning about …
Students continue to explore the story of building a pyramid, learning about the simple machine called a pulley. They learn how a pulley can be used to change the direction of applied forces and move/lift extremely heavy objects, and the powerful mechanical advantages of using a multiple-pulley system. Students perform a simple demonstration to see the mechanical advantage of using a pulley, and they identify modern day engineering applications of pulleys. In a hands-on activity, they see how a pulley can change the direction of a force, the difference between fixed and movable pulleys, and the mechanical advantage gained with multiple / combined pulleys. They also learn the many ways engineers use pulleys for everyday purposes.
Students learn about the mechanical advantage offered by pulleys in an interactive …
Students learn about the mechanical advantage offered by pulleys in an interactive and game-like manner. By virtue of the activity's mechatronic presentation, they learn to study a mechanical system not as a static image, but rather as a dynamic system that is under their control. Using a LEGO® MINDSTORMS® robotics platform and common hardware items, students build a mechanized elevator system. The ability to control different parameters (such as motor power, testing load and pulley arrangement) enables the teacher, as well as the students, to emphasize and reinforce particular aspects/effects of mechanical advantage.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
This activity is a mini lab where students see the effects of …
This activity is a mini lab where students see the effects of gravity on objects falling from a resting state and objects projected out from the same level.
Explore forces and motion as you push household objects up and down …
Explore forces and motion as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces. Graphs show forces, energy and work.
This movie shows red-necked phalarope feeding behavior. The phalarope, indigenous to western …
This movie shows red-necked phalarope feeding behavior. The phalarope, indigenous to western North America, swims in circles to create a vortex to bring small crustaceans to the surface. The bird then uses its beak to draw food-rich water into its mouth, but until now, no one knew how. Using a mechanical model of the phalarope beak, researchers at MIT and their colleagues from Ecole Polytechnique in Paris recently discovered how the birds use surface interactions between their beaks and the water droplets to propel bits of food from beak tip to mouth
Students write a biographical sketch of an artist or athlete who lives …
Students write a biographical sketch of an artist or athlete who lives on the edge, riding the gravity wave, to better understand how these artists and athletes work with gravity and manage risk. Note: The literacy activities for the Mechanics unit are based on physical themes that have broad application to our experience in the world concepts of rhythm, balance, spin, gravity, levity, inertia, momentum, friction, stress and tension.
Students conduct an experiment to determine the relationship between the speed of …
Students conduct an experiment to determine the relationship between the speed of a wooden toy car at the bottom of an incline and the height at which it is released. They observe how the photogate-based speedometer instrument "clocks" the average speed of an object (the train). They gather data and create graphs plotting the measured speed against start height. After the experiment, as an optional extension activity, students design brakes to moderate the speed of the cart at the bottom of the hill to within a specified speed range.
Students learn what a pendulum is and how it works in the …
Students learn what a pendulum is and how it works in the context of amusement park rides. While exploring the physics of pendulums, they are also introduced to Newton's first law of motion about continuous motion and inertia.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.