Updating search results...

Search Resources

470 Results

View
Selected filters:
  • energy
Power for Developing Countries
Read the Fine Print
Educational Use
Rating
0.0 stars

Working in groups, students look at three different villages in various parts of Africa and design economically viable engineering solutions to answer the energy needs of the off-the-grid small towns, given limited budgets. Each village has different nearby resources, both renewable and nonrenewable. Student teams conduct research, make calculations, consider the options and create plans, which they present to the class. Through their investigations and planning of custom solutions for each locale, they experience the real-world engineering research and analysis steps of the engineering design process.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Boeing Grand Challenge K-12 Outreach Fellows Program, Pratt School of Engineering, Duke University,
Kushal Seetharam
Date Added:
10/14/2015
Powering the U.S.
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson provides students with an overview of the electric power industry in the United States. Students also become familiar with the environmental impacts associated with a variety of energy sources.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Frank Burkholder
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Power to the People
Read the Fine Print
Educational Use
Rating
0.0 stars

Students read and evaluate descriptions of how people live "off the grid" using solar power and come to understand better the degree to which that lifestyle is or is not truly independent of technological, economic and cultural infrastructure and resources. In the process, students develop a deeper appreciation of the meaning of "community" and the need for human connection. This activity is geared towards fifth-grade and older students and Internet research capabilities are required. Portions of this activity may be appropriate with younger students.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise Carlson
Integrated Teaching and Learning Program,
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Preventing Potholes
Read the Fine Print
Educational Use
Rating
0.0 stars

Acting as civil engineers hired by the U.S. Department of Transportation to research how to best use piezoelectric materials to detect road damage, student groups are challenged to independently create their own experiment procedures, working with given materials and tools. The general approach is that they set up model roads using rubber mats to simulate asphalt and piezoelectric transducers to simulate the in-ground road sensors. They drop heavy bolts at various locations on the “road,” collecting data and then analyzing the voltage changes across the piezoelectric transducers caused by the vibrations of the bolt hitting the rubber. After making notches in the rubber “road” to simulate cracks and potholes, they collect more data to see if the piezo elements detect the damage. Students write up their research and conclusions as if presenting evidence to USDOT officials about how the voltage changes across the piezo elements can be used to indicate road damage and extrapolated to determine when roads need maintenance service.

Subject:
Career and Technical Education
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Adam Alster
Amir Alvai
Andrea Varricchione
Drew Kim
Nizar Lajnef
Smart Sensors and Sensing Systems RET, College of Engineering, Michigan State University
Victoria Davis-King
Date Added:
10/13/2017
Principles of Engineering Practice
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class introduces students to the interdisciplinary nature of 21st-century engineering projects with three threads of learning: a technical toolkit, a social science toolkit, and a methodology for problem-based learning. Students encounter the social, political, economic, and technological challenges of engineering practice by participating in real engineering projects with faculty and industry; this semester’s major project focuses on the engineering and economics of solar cells. Student teams will create prototypes and mixed media reports with exercises in project planning, analysis, design, optimization, demonstration, reporting and team building.

Subject:
Environmental Science
Life Science
Material Type:
Full Course
Date Added:
02/09/2023
Problem Solving
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to a systematic procedure for solving problems through a demonstration and then the application of the method to an everyday activity. The unit project is introduced to provide relevance to subsequent lessons.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Office of Educational Partnerships,
Susan Powers, Jan DeWaters, and a number of Clarkson and St. Lawrence students in the K-12 Project Based Learning Partnership Program
Date Added:
09/18/2014
Process Intensification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

1. Introduction to Process Intensification (PI):
- sustainability-related issues in process industry;
- definitions of Process Intensification;
- fundamental principles and approaches of PI.

2. How to design a sustainable, inherently safer processing plant
- presentation of PI case study assignments.

3. PI Approaches:
- STRUCTURE - PI approach in spatial domain (incl. "FOCUS ON" guest lecture)
- ENERGY - PI approach in thermodynamic domain
- SYNERGY - PI approach in functional domain
- TIME - PI approach in temporal domain
Study Goals
Basic knowledge in Process Intensification

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr. G. Stefanidis
Date Added:
02/04/2016
Project Guide for Basic Electronics #1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Included in this resource are several project guides for the first unit (Basic Components and Circuits) of the Snap-Circuits Basic Electronics Kits manual. These are to be used in conjunction with the provided manual as a guide for students to engage in inquiry-based project learning. There are also project guides for use with PhET online simulations on basic circuits. (Students should have access to multimeters for these activities)

Subject:
Physical Science
Material Type:
Activity/Lab
Assessment
Unit of Study
Date Added:
12/12/2018
Put a Spark in It! - Electricity
Read the Fine Print
Educational Use
Rating
0.0 stars

Uncountable times every day with the merest flick of a finger each one of us calls on electricity to do our bidding. What would your life be like without electricity? Students begin learning about electricity with an introduction to the most basic unit in ordinary matter, the atom. Once the components of an atom are addressed and understood, students move into the world of electricity. First, they explore static electricity, followed by basic current electricity concepts such as voltage, resistance and open/closed circuits. Next, they learn about that wonderful can full of chemicals the battery. Students may get a "charge" as they discover the difference between a conductor and an insulator. The unit concludes with lessons investigating simple circuits arranged "in series" and "in parallel," including the benefits and unique features associated with each. Through numerous hands-on activities, students move cereal and foam using charged combs, use balloons to explore electricity and charge polarization, build and use electroscopes to evaluate objects' charge intensities, construct simple switches using various materials in circuits that light bulbs, build and use simple conductivity testers to evaluate materials and solutions, build and experiment with simple series and parallel circuits, design and build their own series circuit flashlight, and draw circuits using symbols.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
See individual lessons and activities.
Date Added:
10/14/2015
Puttin' It All Together
Read the Fine Print
Educational Use
Rating
0.0 stars

On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Chris Yakacki
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Date Added:
09/18/2014
The Ramp
Unrestricted Use
CC BY
Rating
0.0 stars

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Carl Wieman
Danielle Harlow
Harlow, Danielle
Kathy Perkins
Loeblein, Trish
Perkins, Kathy
PhET Interactive Simulations
Reid, Sam
Sam Reid
Trish Loeblein
Wendy Adams
Woieman, Carl
Date Added:
10/05/2006
The Ramp (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Harlow, Danielle
Loeblein, Trish
Perkins, Kathy
Reid, Sam
Woieman, Carl
Date Added:
11/02/2009
Ramp and Review
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables, and review the relationships between these concepts.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Chris Yakacki
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Date Added:
10/14/2015
Ready, Set, Escape
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are asked to design simple yet accurate timing devices using limited supplies. The challenge is to create a device that measures out a time period of exactly three minutes in order to enable a hypothetical prison escape. Student groups brainstorm ideas using the different materials provided. They observe and explain the effects of conservation of energy.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
K-12 Outreach Office,
Date Added:
09/18/2014
Redox Battery Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lab, students are introduced to energy sciences as they explore redox reactions and how hydrogen fuel cells turn the energy released when hydrogen and oxygen are combined into electrical energy that can be read on a standard multimeter. They learn about the energy stored in bonds and how, by controlling the reaction, this energy can be turned into more or less useful forms.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alexander Robinson
Robotics Engineering for Better Life and Sustainable Future RET, College of Engineering, Michigan State University
Date Added:
10/13/2017
Renew-a-Bead
Read the Fine Print
Educational Use
Rating
0.0 stars

A quantitative illustration of how non-renewable resources are depleted while renewable resources continue to provide energy. Students remove beads (units of energy) from a bag (representing a country). A certain number of beads are removed from the bag each "year." At some point, no non-renewable beads remain. Student groups have different ratios of renewable and non-renewable energy beads. A comparison of the remaining beads and time when they ran out of energy shows the value of utilizing a greater proportion of renewable resources as a sustainable energy resources.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Office of Educational Partnerships,
Susan Powers, Jan DeWaters, and a number of Clarkson and St. Lawrence University students in the K-12 Project Based Learning Partnership Program
Date Added:
09/18/2014
Renewable Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to the types of renewable energy resources. They are involved in activities to help them understand the transformation of energy (solar, water and wind) into electricity. Students explore the different roles of engineers working in renewable energy fields.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amy Kolenbrander
Integrated Teaching and Learning Program,
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Renewable Energy Design: Wind Turbines
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS GK-12 Program, Polytechnic Institute of New York University
Gisselle Cunningham, Russell Holstein, Lindrick Outerbridge
Date Added:
10/13/2017
Renewable Energy Living Lab: Energy Experts
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate various renewable energy sources and the feasibility of implementing these sources. Working in small groups, students use data from the Renewable Energy Living Lab to describe and understand the way the world works. The data is obtained through observation and experimentation. Using the living lab gives students and teachers the opportunity to practice analyzing data to solve problems or answer questions, in much the same way that scientists and engineers do every day.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Civil and Environmental Engineering Department,
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Date Added:
09/18/2014
Renewable Energy Living Lab: Energy Priorities
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze real-world data for five types of renewable energy, as found on the online Renewable Energy Living Lab. They identify the best and worst locations for production of each form of renewable energy, and then make recommendations for which type that state should pursue.

Subject:
Career and Technical Education
Environmental Science
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Civil and Environmental Engineering Department,
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
10/14/2015