This activity can be conducted in the classroom. The students are given …
This activity can be conducted in the classroom. The students are given an opportunity to discover the basic concept of balance/counterbalance and how evenly distributed weight affects an object.
In this lesson for grades 1 and 2, students record observations and …
In this lesson for grades 1 and 2, students record observations and look for patterns while exploring weights on a balance scale. They balance equal and unequal weights and record their distances from the fulcrum. Students use a crayon (as the fulcrum) and a ruler to represent the balance. A printable record keeping sheet is provided.
In this lesson, students discover the entire process that goes into designing …
In this lesson, students discover the entire process that goes into designing a rocket for any customer. In prior lessons, students learned how rockets work, but now they learn what real-world decisions engineers have to make when designing and building a rocket. They learn about important factors such as supplies, ethics, deadlines and budgets. Also, students learn about the Engineering process, and recognize that the first design is almost never the final design. Re-Engineering is a critical step in creating a rocket.
Students explore methods employing simple machines likely used in ancient pyramid building, …
Students explore methods employing simple machines likely used in ancient pyramid building, as well as common modern-day material transportation. They learn about the wheel and axle as a means to transport materials from rock quarry to construction site. They also learn about different types and uses of a lever for purposes of transport. In an open-ended design activity, students choose from everyday materials to engineer a small-scale cart and lever system to convey pyramid-building materials.
In this math meets engineering activity, learners make paper airplanes and explore …
In this math meets engineering activity, learners make paper airplanes and explore attributes related to increasing flight distances. Each learner collects data from three flights of the airplane and finds the median distance. Learners then collect, organize, display, and interpret the median distances for the group in a stem-and-leaf plot. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.
Students revisit Bernoulli's Principle (Lesson 1 of the Airplanes unit) and learn …
Students revisit Bernoulli's Principle (Lesson 1 of the Airplanes unit) and learn how engineers use this principle to design airplane wings. Airplane wings create lift by changing the pressure of the air around it. This is the first of four lessons exploring the four key forces in flight: lift, weight, thrust and drag.
The purpose of this lesson is to help students understand the relationship …
The purpose of this lesson is to help students understand the relationship between the mass and the weight of an object. Students will study the properties of common materials and why airplanes use specific materials.
Students design, build and test model race cars made from simple materials …
Students design, build and test model race cars made from simple materials (lifesaver-shaped candies, plastic drinking straws, Popsicle sticks, index cards, tape) as a way to explore independent, dependent and control variables. They measure the changes in distance travelled with the addition of mass to the vehicles. Students also practice the steps of the engineering design process by brainstorming, planning, building, testing, and improving their "mint-mobiles."
Your students have probably walked or ridden over a bridge at some …
Your students have probably walked or ridden over a bridge at some point in their lives. In this engineering activity they will design and make bridges out of folded pieces of paper, and test how much weight they can hold with pennies. How does the shape of a bridge affect its strength? Let your students explore and find out with this lesson!
In this activity, students will learn about Newton's 2nd Law of Motion. …
In this activity, students will learn about Newton's 2nd Law of Motion. They will learn that the force required to move a book is proportional to the weight of the book. Engineers use this relationship to determine how much force they need to move an airplane.
Students learn about the role engineers play in designing and building truss …
Students learn about the role engineers play in designing and building truss structures. Simulating a real-world civil engineering challenge, student teams are tasked to create strong and unique truss structures for a local bridge. They design to address project constraints, including the requirement to incorporate three different polygon shapes, and follow the steps of the engineering design process. They use hot glue and Popsicle sticks to create their small-size bridge prototypes. After compressive load tests, they evaluate their results and redesign for improvement. They collect, graph and analyze before/after measurements of interior angles to investigate shape deformation. A PowerPoint® presentation, design worksheet and data collection sheet are provided. This activity is the final step in a series on polygons and trusses.
Experimenting with balls is fun this lesson will allow students to make …
Experimenting with balls is fun this lesson will allow students to make them colllide and study how the push each-other and people as well. They will see the differences with varying weights of balls as well.
Students learn about the concept of pushing, as well as the relationship …
Students learn about the concept of pushing, as well as the relationship between force and mass. Students practice measurement skills using pan scales and rulers to make predictions about mass and distance. A LEGO MINDSTORMS(TM) NXT robot is used to test their hypotheses. By the end of the activity, students have a better understanding of robotics, mass and friction and the concept of predicting.
In this math meets physics game, learners pretend they are pilots of …
In this math meets physics game, learners pretend they are pilots of rescue helicopters and must fly their helicopters to the top of a mountain to rescue lost hikers. Learners first explore the four forces of flight: lift, drag, thrust, and weight. Before playing the game, learners conduct a probability experiment with spinners and record their results in tally tables and bar graphs. They then use their findings to select spinners with the greatest probability of helping them win the game. In a portion of the game, learners use ordered pairs to plot points on the coordinate plane to show their flight path.
One of the exciting challenges for engineers is the idea of exploration. …
One of the exciting challenges for engineers is the idea of exploration. This lesson looks more closely at Spaceman Rohan, Spacewoman Tess, their daughter Maya, and their challenges with getting to space, setting up satellites, and exploring uncharted waters via a canoe. This lesson reinforces rockets as a vehicle that helps us explore outside the Earth's atmosphere (i.e., to move without air) by using the principles of Newton's third law of motion. Also, the ideas of thrust, control and weight all principles that engineers deal with when building a rocket are introduced.
Students learn how and why engineers design satellites to benefit life on …
Students learn how and why engineers design satellites to benefit life on Earth, as well as explore motion, rockets and rocket motion. Through six lessons and 10 associated hands-on activities, students discover that the motion of all objects everything from the flight of a rocket to the movement of a canoe is governed by Newton's three laws of motion. This unit introduces students to the challenges of getting into space for the purpose of exploration. The ideas of thrust, weight and control are explored, helping students to fully understand what goes into the design of rockets and the value of understanding these scientific concepts. After learning how and why the experts make specific engineering choices, students also learn about the iterative engineering design process as they design and construct their own model rockets. Then students explore triangulation, a concept that is fundamental to the navigation of satellites and global positioning systems designed by engineers; by investigating these technologies, they learn how people can determine their positions and the locations of others.
Students learn about the strength of bones and methods of helping to …
Students learn about the strength of bones and methods of helping to mend fractured bones. During a class demonstration, a chicken bone is broken by applying a load until it reaches a point of failure (fracture). Then, working as biomedical engineers, students teams design their own splint or cast to help repair a fractured bone, learning about the strength of materials used.
In this activity, students investigate the effect that weight has on rocket …
In this activity, students investigate the effect that weight has on rocket flight. Students construct a variety of their own straw-launched rockets, or "strawkets," that have different weights. Specifically, they observe what happens when the weight of a strawket is altered by reducing its physical size and using different construction materials. Finally, the importance of weight distribution in a rocket is determined.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.