Updating search results...

Search Resources

2352 Results

View
Selected filters:
  • Physical Science
Magnet and Compass
Unrestricted Use
CC BY
Rating
0.0 stars

Ever wonder how a compass worked to point you to the Arctic? Explore the interactions between a compass and bar magnet, and then add the earth and find the surprising answer! Vary the magnet's strength, and see how things change both inside and outside. Use the field meter to measure how the magnetic field changes.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Dubson, Michael
Harlow, Danielle
Kathy Perkins
Malley, Chris
Michael Dubson
Paulson, Archie
Perkins, Kathy
PhET Interactive Simulations
Wieman, Carl
Date Added:
01/23/2011
Magnetic Fields Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Eric Appelt
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
Magnetic Fields and Distance
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure the relative intensity of a magnetic field as a function of distance. They place a permanent magnet selected distances from a compass, measure the deflection, and use the gathered data to compute the relative magnetic field strength. Based on their findings, students create mathematical models and use the models to calculate the field strength at the edge of the magnet. They use the periodic table to predict magnetism. Finally, students create posters to communicate the details their findings. This activity guides students to think more deeply about magnetism and the modeling of fields while practicing data collection and analysis. An equations handout and two grading rubrics are provided.

Subject:
Algebra
Chemistry
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Nanotechnology RET, Department of Earth Science, School Science and Technology, Rice University
Ralph Cox
Sabina Schill
Date Added:
10/13/2017
Magnetic Fluids
Read the Fine Print
Educational Use
Rating
0.0 stars

In this fun, engaging activity, students are introduced to a unique type of fluid ferrofluids whose shape can be influenced by magnetic fields! Students act as materials engineers and create their own ferrofluids. They are challenged to make magnetic ink out of ferrofluids and test their creations to see if they work. Concurrently, they learn more about magnetism, surfactants and nanotechnology. As they observe fluid properties as a standalone-fluid and under an imposed magnetic field, they come to understand the components of ferrofluids and their functionality.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Marc Bird
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Magnetic Materials
Read the Fine Print
Educational Use
Rating
0.0 stars

Students begin working on the grand challenge of the unit by thinking about the nature of metals and quick, cost-effective means of separating different metals, especially steel. They arrive at the idea, with the help of input from relevant sources, to use magnets, but first they must determine if the magnets can indeed isolate only the steel.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro , Glencliff High School, Nashville
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
A Magnetic Personality
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about magnets and how they are formed. They investigate the properties of magnets and how engineers use magnets in technology. Specifically, students learn about magnetic memory storage, which is the reading and writing of data information using magnets, such as in computer hard drives, zip disks and flash drives.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Denise W. Carlson
Integrated Teaching and Learning Program,
Joe Friedrichsen
Malinda Schaefer Zarske
Date Added:
09/18/2014
Magnetic Resonance Imaging
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson ties the preceding lessons together and brings students back to the grand challenge question on MRI safety. During this lesson, students focus on the logistics of magnetic resonance imaging as well as the MRI hardware. Students can then integrate this knowledge with their acquired knowledge on magnetic fields to solve the challenge question.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Eric Appelt
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014
Magnetic or Not?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the basic magnetic properties of different substances, particularly aluminum and steel. There is a common misconception that magnets attract all metals, largely due to the ubiquity of steel in metal products. The activity provides students the chance to predict, whether or not a magnet will attract specific items and then test their predictions. Ultimately, students should arrive at the conclusion that iron (and nickel if available) is the only magnetic metal.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro (Author), Glencliff High School, Nashville
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
Magnetism and Sound: Creating Your Own Headphones
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After the unit on Electricity and Magnetism, students are given the opportunity to experience practical applications of the concept as they construct their own headphones and listen to music from their I-pods.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Cyndy Reichgelt
Date Added:
02/10/2023
Magnets and Electricity - Creating Magnetism with Electricity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This cooperative classroom activity will allow students to apply their knowledge of magnetism and electricity. The students will create a circuit that lights a flashlight bulb and simultaneously practice the skills of prediction, observation, inferrence, recording, investigation and communication.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Carrie Robatcek
Date Added:
02/10/2023
Magnets and Electromagnets
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the interactions between a compass and bar magnet. Discover how you can use a battery and wire to make a magnet! Can you make it a stronger magnet? Can you make the magnetic field reverse?

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Dubson, Michael
Harlow, Danielle
Kathy Perkins
Malley, Chris
Michael Dubson
Paulson, Archie
Perkins, Kathy
PhET Interactive Simulations
Wieman, Carl
Date Added:
12/02/2010
Make Some Waves
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students use their own creativity (and their bodies) to make longitudinal and transverse waves. Through the use of common items, they will investigate the different between longitudinal and transverse waves.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Frank Burkholder
Integrated Teaching and Learning Program,
Janet Yowell
Date Added:
10/14/2015
Make String from Algae
Rating
0.0 stars

In this lab students will make string out of sodium alginate, an algael polymer, and see what you can craft out of it in this simple chemistry activity. They will discover how strong yet pliable algae in the ocean is because of the strong waves in the ocean. Students can color their string and let it dry before turning it into a cool project.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Date Added:
03/01/2024
Make That Invisible! Refractive Index Matching
Read the Fine Print
Educational Use
Rating
0.0 stars

Students determine the refractive index of a liquid with a simple technique using a semi-circular hollow block. Then they predict the refractive index of a material (a Pyrex glass tube) by matching it with the known refractive index of a liquid using the percent light transmission measurement. The homemade light intensity detector uses an LED and multimeter, which are relatively inexpensive (and readily available) compared to commercially available measurement instruments.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Marjorie Hernandez
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Date Added:
09/18/2014
Make Your Own Temperature Scale
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the difference between temperature and thermal energy. They build a thermometer using simple materials and develop their own scale for measuring temperature. They compare their thermometer to a commercial thermometer, and get a sense for why engineers need to understand the properties of thermal energy.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise Carlson
Integrated Teaching and Learning Program,
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Make a Rubber Band-Powered Car
Rating
0.0 stars

Rubber band-powered cars can be made from a variety of materials, but they all have one thing in common. A rubber band is wound around an axle, a cylindrical rod that passes through the centers of the wheels. As you twist the axle and tighten the rubber band, it stretches and stores elastic potential energy. When you release the axle, the rubber band contracts, and this potential energy is converted to kinetic energy, the energy of motion, and the wheels will spin. Depending on the amount of friction with the ground, the wheels might propel the car forward, or they might just spin in place! The frictional force between the wheels and the ground depends on both the weight of the car and the coefficient of friction, which depends on the materials the wheels and ground are made of. That is a lot of physics in one little device!

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Author:
Ben Finio
Date Added:
03/30/2024
Making Bath Salts for Mother's Day, a Primary Chemistry Lesson
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a guided discovery where students make chemical mixtures using sodium, learn about the Periodic Table, view salt under a microscope, and have a final result of bath salts for the bathtub

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
02/10/2023