This class examines the relationship between the study of natural history, both …
This class examines the relationship between the study of natural history, both domestic and exotic, by Europeans and Americans, and exploration and exploitation of the natural world, focusing on the eighteenth and nineteenth centuries.
What is a city? What shapes it? How does its history influence …
What is a city? What shapes it? How does its history influence future development? How do physical form and institutions vary from city to city and how are these differences significant? How are cities changing and what is their future? This course will explore these and other questions, with emphasis upon twentieth-century American cities. A major focus will be on the physical form of cities—from downtown and inner-city to suburb and edge city—and the processes that shape them.
These questions and more are explored through lectures, readings, workshops, field trips, and analysis of particular places, with the city itself as a primary text. In light of the 2016 centennial of MIT’s move from Boston to Cambridge, the 2015 iteration of the course focused on MIT’s original campus in Boston’s Back Bay, and the university’s current neighborhood in Cambridge. Short field assignments, culminating in a final project, will provide students opportunities to use, develop, and refine new skills in “reading” the city.
This class examines tools, data, and ideas related to past climate changes …
This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).
This class provides a historical survey of the ways that people have …
This class provides a historical survey of the ways that people have interacted with their closest animal relatives, for example: hunting, domestication of livestock, exploitation of animal labor, scientific study of animals, display of exotic and performing animals, and pet keeping. Themes include changing ideas about animal agency and intelligence, our moral obligations to animals, and the limits imposed on the use of animals.
This course introduces the structure, composition, and physical processes governing the terrestrial …
This course introduces the structure, composition, and physical processes governing the terrestrial planets, including their formation and basic orbital properties. Topics include plate tectonics, earthquakes, seismic waves, rheology, impact cratering, gravity and magnetic fields, heat flux, thermal structure, mantle convection, deep interiors, planetary magnetism, and core dynamics. Suitable for majors and non-majors seeking general background in geophysics and planetary structure.
This course is designed to give you the scientific understanding you need …
This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.
Here at TILclimate (Today I Learned: Climate), there’s one question we get …
Here at TILclimate (Today I Learned: Climate), there’s one question we get from our listeners more than any other: “What can I do to make a difference on climate change?” In this special episode of the podcast, three guests who have made acting on climate a big part of their lives join interim host Aaron Krol to share their stories and their advice for those who want to do more. Together, we discuss how to mobilize and inspire others, how small individual actions can lead to large societal ones, and why your contributions to a cooler, more resilient future can have benefits that aren’t just about rising seas or mounting heat waves.
“I love to travel. But I hate the fact that something I …
“I love to travel. But I hate the fact that something I love to do, creates so much pollution.” In this episode of TILclimate (Today I Learned: Climate), MIT professor Steven Barrett and host Laur Hesse Fisher dig into how — and why — air travel impacts our earth’s climate, and what solutions are on the horizon. They explore the surprising heating effect of condensation trails (“contrails”), how computer simulations of the earth’s climate system are built, and what scientists and engineers are doing to make flying, well, less bad for the planet.
Humans have changed clouds: where they form, how much precipitation they produce, …
Humans have changed clouds: where they form, how much precipitation they produce, and how quickly it rains or snows. In this episode of TILclimate (Today I Learned: Climate), MIT professor Dan Cziczo joins host Laur Hesse Fisher to spell out why this is, and what this has to do with climate change. They explore how clouds form in the first place, how human activity has impacted cloud formation and rainfall, and what scientists are still trying to understand. They touch upon the emerging field of geoengineering and how humans could create more clouds to cool the planet -- but we’ll have full episode on that coming out soon.
Humans use around 90 billion metric tons of materials every year, creating …
Humans use around 90 billion metric tons of materials every year, creating about ⅓ of total global greenhouse gas emissions. Which materials produce the most emissions? You might be surprised.
Scientists predict that hurricanes will hit us harder in the future -- …
Scientists predict that hurricanes will hit us harder in the future -- but why? And what can we expect to see? In this episode of #TILclimate (Today I Learned: Climate), MIT professor Kerry Emanuel joins host Laur Hesse Fisher to break down how these “heat engines” work and how a changing climate will increase hurricane intensity, storm surges, and flooding. They also explore how people around the world are adapting to growing hurricane risks.
How do we make choices in the face of uncertainty? In this …
How do we make choices in the face of uncertainty? In this episode of TILclimate (Today I Learned: Climate), MIT professor Kerry Emanuel joins host Laur Hesse Fisher to talk about climate risk. Together, they break down why the climate system is so hard to predict, what exactly scientists mean when they talk about “uncertainty”, and how scientists quantify and assess the risks associated with climate change. Although this uncertainty shrinks every day — as researchers refine their work, computing power grows, and models improve — what we do and how quickly we act will ultimately come down to how much risk we are willing to accept.
With climate change, some parts of the world will get more water, …
With climate change, some parts of the world will get more water, but others will experience droughts. Some will start seeing more mosquitoes, but some fewer. And some regions might actually benefit economically. What’s the deal? In this episode of TILclimate (Today I Learned: Climate), MIT professor Elfatih Eltahir joins host Laur Hesse Fisher to talk about how climate impacts will differ across the globe. Together, they do a quick world tour, exploring how climate change will affect malaria in Africa, water availability in the Nile, and heat waves in Southern Asia.
What exactly is a carbon price, and how does it work? What …
What exactly is a carbon price, and how does it work? What would it look like and how would it change everyday life? In this episode of TILclimate (Today I Learned: Climate), MIT economics professor Christopher Knittel joins host Laur Hesse Fisher to break down the complexities of carbon pricing. Together, they explain different types of programs, give us a sense of how much it would cost, and explore how countries and U.S. states are experimenting with carbon pricing now.
When talking about climate change solutions, we often hear about reducing emissions …
When talking about climate change solutions, we often hear about reducing emissions and adapting to climate impacts, but a third option is starting to get more attention: altering the atmosphere. In this episode of TILclimate (Today I Learned: Climate), MIT alumnus Janos Pasztor joins host Laur Hesse Fisher to explain geoengineering: what it is and the different technologies that are being researched. They also dive into the opportunities and challenges presented by geoengineering, and what difficult decisions we might need to make as a society.
Is it too late to prevent climate change? Are the scary predictions …
Is it too late to prevent climate change? Are the scary predictions that we hear about inevitable? In this episode of TILclimate (Today I Learned Climate), MIT Prof. Noelle Selin joins host Laur Hesse Fisher to answer these questions. They explore what change is predictable, explain what climate goals like 1.5 C mean, and give insight to what it will take in order to achieve them.
The electric grid are networks that carry electricity from central power plants …
The electric grid are networks that carry electricity from central power plants to our homes. But how exactly is electricity generated and brought to our door? And what needs to change if we’re going to transition to generating “clean” electricity? In this episode of TILclimate (Today I Learned: Climate), Harvey Michaels, lecturer at the MIT Sloan School of Management, joins host Laur Hesse Fisher to explain the history and perhaps surprising features of the electric grid, and what changes are in store for the future.
Fossil fuels -- coal, natural gas, and oil -- provide the large …
Fossil fuels -- coal, natural gas, and oil -- provide the large majority of our power in the United States and around the world. In this episode of TILclimate (Today I Learned: Climate), John Reilly of the MIT Joint Program on the Science and Policy of Global Change joins host Laur Hesse Fisher to demystify fossil fuels: what are the different kinds of fossil fuels, and how do they compare to each other? What is “fracking” and how did impact energy use and CO2 emissions in the United States? What kinds of decisions do we need to make to transition to clean energy, while providing electricity to a growing number of people?
In this mini-episode of TILclimate (Today I Learned: Climate), host Laur Hesse …
In this mini-episode of TILclimate (Today I Learned: Climate), host Laur Hesse Fisher breaks down what we’re actually talking about when we use the word “energy”. In a few minutes, we cover the difference between energy and electricity, and the big picture strategy for how to reduce CO2 for each.
What will it take to generate the electricity our society needs, without …
What will it take to generate the electricity our society needs, without generating carbon emissions? In this episode of TILclimate (Today I Learned Climate), Dr. Magdalena Klemun at the MIT Institute for Data, Systems and Society joins host Laur Hesse Fisher to begin exploring this question, starting with wind and solar power. What exactly are wind and solar power? What challenges do we currently face when trying to use wind and solar to generate most of our electricity? What’s the role of energy storage, and what could our future zero-carbon energy mix look like?
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.