The purpose of this task is to use finite geometric series to …
The purpose of this task is to use finite geometric series to investigate an amazing mathematical object that might inspire students' curiosity. The Cantor Set is an example of a fractal.
This Java applet activity allows students to explore the various situations described …
This Java applet activity allows students to explore the various situations described in "The Chairs Around the Table" lesson (cataloged separately). The user can select Exploration mode, in which the number of chairs needed for a particular arrangement of tables is displayed; or Guess, in which the user is able to construct an arrangement and then predict the number of chairs. There are two types of tables to choose from and two different table arrangements. Instructions and exploration question are provide.
In this lesson from Illuminations, students explore and discover linear relationships. Linear …
In this lesson from Illuminations, students explore and discover linear relationships. Linear patterns are identified, extended and described verbally, numerically and algebraically through three investigations. Using manipulatives and the linked applet, "Chairs", learners determine the number of chairs needed when the number of tables is known, and vice versa. Instructional plan, questions for the students, assessment options, extensions and teacher reflections are provided.
Although this task is fairly straightforward, it is worth noticing that it …
Although this task is fairly straightforward, it is worth noticing that it does not explicitly tell students to look for intersection points when they graph the circle and the line. Thus, in addition to assessing whether they can solve the system of equations, it is assessing a simple but important piece of conceptual understanding, namely the correspondence between intersection points of the two graphs and solutions of the system.
It is often said that mathematics is the language of science. If …
It is often said that mathematics is the language of science. If this is true, then the language of mathematics is numbers. The earliest use of numbers occurred 100 centuries ago in the Middle East to count, or enumerate items. Farmers, cattlemen, and tradesmen used tokens, stones, or markers to signify a single quantitya sheaf of grain, a head of livestock, or a fixed length of cloth, for example. Doing so made commerce possible, leading to improved communications and the spread of civilization.
This course covers relations and functions, specifically, linear, polynomial, exponential, logarithmic, and …
This course covers relations and functions, specifically, linear, polynomial, exponential, logarithmic, and rational functions. Additionally, sections on conics, systems of equations and matrices and sequences are also available.
The primary purpose of this problem is to rewrite simple rational expressions …
The primary purpose of this problem is to rewrite simple rational expressions in different forms to exhibit different aspects of the expression, in the context of a relevant real-world context (the fuel efficiency of of a car). Indeed, the given form of the combined fuel economy computation is useful for direct calculation, but if asked for an approximation, is not particularly helpful.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to interpret exponential and linear functions and in particular to identify and help students who have the following difficulties: translating between descriptive, algebraic and tabular data, and graphical representation of the functions; recognizing how, and why, a quantity changes per unit intervale; and to achieve these goals students work on simple and compound interest problems.
The foundation of this lesson is constructing, communicating, and evaluating student-generated tables …
The foundation of this lesson is constructing, communicating, and evaluating student-generated tables while making comparisons between three different financial plans. Students are given three different DVD rental plans and asked to analyze each one to see if they could determine when the 3 different DVD plans cost the same amount of money, if ever. (7th/8th Grade Math)
A brief refresher on the Cartesian plane includes how points are written …
A brief refresher on the Cartesian plane includes how points are written in (x, y) format and oriented to the axes, and which directions are positive and negative. Then students learn about what it means for a relation to be a function and how to determine domain and range of a set of data points.
This task presents a real world application of finite geometric series. The …
This task presents a real world application of finite geometric series. The context can lead into several interesting follow-up questions and projects. Many drugs only become effective after the amount in the body builds up to a certain level. This can be modeled very well with geometric series.
This unit of four lessons highlights different aspects of students’ understanding and …
This unit of four lessons highlights different aspects of students’ understanding and use of patterns as they analyze relationships and make predictions, as discussed in the Algebra Standard. In this cluster of activities, students use two interactive math applets (both catalogued separately) to learn about repeating and growing patterns. In the first part, students explore a two-square pattern unit and in the second part, students investigate repeating patterns with pattern units of three, four, and five squares. In Part 3, students analyze repeating patterns of colored cubes and lastly in Part 4, students create growing patterns of colored cubes and compare them to repeating patterns.
This lesson plan introduces the game Deep Sea Duel, which develops students' …
This lesson plan introduces the game Deep Sea Duel, which develops students' operation skills and strategic thinking, and can be played online or with cards. After playing several variations of the game, students attempt to identify a winning strategy and compare the game to other familiar games. Variations include whole numbers, decimals, fractions, exponents, and words. The lesson includes printable cards and a student worksheet, questions for student discussion and teacher reflection, assessment options, and extensions. The online game and the cited article are cataloged separately.
The primary purpose of this task is to illustrate certain aspects of …
The primary purpose of this task is to illustrate certain aspects of the mathematics described in the A.SSE.1. The task has students look for structure in algebraic expressions related to a context, and asks them to relate that structure to the context. In particular, it is worth emphasizing that the task requires no algebraic manipulation from the students.
Students divide a parking lot into evenly spaced sections based on various …
Students divide a parking lot into evenly spaced sections based on various widths of the dividers. Students will generalize the experience to write equations to help evenly space any size parking lot with any size dividers and any number of dividers.
This task does not actually require that the student solve the system …
This task does not actually require that the student solve the system but that they recognize the pairs of linear equations in two variables that would be used to solve the system. This is an important step in the process of solving systems.
This purpose of this task is to help students see two different …
This purpose of this task is to help students see two different ways to look at percentages both as a decrease and an increase of an original amount. In addition, students have to turn a verbal description of several operations into mathematical symbols.
Learners follow step-by-step instructions for dividing algebraic fractions. They begin by reducing …
Learners follow step-by-step instructions for dividing algebraic fractions. They begin by reducing the fractions to their simplest form. Immediate feedback is provided. This activity has audio content.
" Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their …
" Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations appear in many contexts: integrable systems (Calogero-Moser and Ruijsenaars models), algebraic geometry (Hilbert schemes), orthogonal polynomials, Lie theory, quantum groups, etc. In this course we will review the basic theory of DAHA and their representations, emphasizing their connections with other subjects and open problems."
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.