With Michael Turner (far right), head of NSF's Directorate of Mathematical and …
With Michael Turner (far right), head of NSF's Directorate of Mathematical and Physical Sciences, as moderator, members of the research team (from right to left, Geoffrey Marcy of the University of California, Berkeley, Paul Butler of the Carnegie Institution of Washington, Eugenio Rivera of the Lick Observatory, University of California, Santa Cruz, and theoretical astronomer Jack Lissauer of NASA's Ames Research Center) presented their findings during a press conference on Monday, June 13, 2005, at NSF in Arlington, Va.
Galactic dynamics: potential theory, orbits, collisionless Boltzmann equation, etc. Galaxy interactions. Groups …
Galactic dynamics: potential theory, orbits, collisionless Boltzmann equation, etc. Galaxy interactions. Groups and clusters; dark matter. Intergalactic medium; x-ray clusters. Active galactic nuclei: unified models, black hole accretion, radio and optical jets, etc. Homogeneity and isotropy, redshift, galaxy distance ladder. Newtonian cosmology. Roberston-Walker models and cosmography. Early universe, primordial nucleosynthesis, recombination. Cosmic microwave background radiation. Large-scale structure, galaxy formation.
This course provides an introduction to the physics and chemistry of the …
This course provides an introduction to the physics and chemistry of the atmosphere, including experience with computer codes. It is intended for undergraduates and first year graduate students.
Introduction to the physics of atmospheric radiation and remote sensing including use …
Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. Solution of inverse problems in remote sensing of atmospheric temperature and composition.
AtomTouch is a molecular simulation app, created through a partnership between UW …
AtomTouch is a molecular simulation app, created through a partnership between UW MRSEC and Field Day Lab. It allows learners to explore principles of thermodynamics and molecular dynamics in a tactile, exploratory way. The simulation was developed to help students understand the structures and attributes of particles at the molecular level, providing real-time feedback and responding to students’ actions.
AtomTouch is a molecular simulation app, created through a partnership between UW …
AtomTouch is a molecular simulation app, created through a partnership between UW MRSEC and Field Day Lab, that allows learners to explore principles of thermodynamics and molecular dynamics in a tactile, exploratory way.
This is the second of a two-semester subject sequence beginning with Atomic …
This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light–squeezed states; multi-photon processes, Raman scattering; coherence–level crossings, quantum beats, double resonance, superradiance; trapping and cooling-light forces, laser cooling, atom optics, spectroscopy of trapped atoms and ions; atomic interactions–classical collisions, quantum scattering theory, ultracold collisions; and experimental methods.
In this lesson, the students will discover the relationship between an object's …
In this lesson, the students will discover the relationship between an object's mass and the amount of space it takes up (its volume). The students will also learn about the concepts of displacement and density.
This Freshman Advising Seminar surveys the many applications of magnets and magnetism. …
This Freshman Advising Seminar surveys the many applications of magnets and magnetism. To the Chinese and Greeks of ancient times, the attractive and repulsive forces between magnets must have seemed magical indeed. Through the ages, miraculous curative powers have been attributed to magnets, and magnets have been used by illusionists to produce "magical" effects. Magnets guided ships in the Age of Exploration and generated the electrical industry in the 19th century. Today they store information and entertainment on disks and tapes, and produce sound in speakers, images on TV screens, rotation in motors, and levitation in high-speed trains. Students visit various MIT projects related to magnets (including superconducting electromagnets) and read about and discuss the history, legends, pseudoscience, science, and technology of types of magnets, including applications in medicine. Several short written reports and at least one oral presentation will be required of each participant.
In this lesson, students are introduced to audio engineers. They discover in …
In this lesson, students are introduced to audio engineers. They discover in what type of an environment audio engineers work and exactly what they do on a day-to-day basis. Students come to realize that audio engineers help produce their favorite music and movies.
This lecture/activity on force will further a students' understanding of forces on …
This lecture/activity on force will further a students' understanding of forces on an object, as well as the difference between a balanced and unbalanced forces.
Try your hand at this engineering challenge. Can you build a "launcher" …
Try your hand at this engineering challenge. Can you build a "launcher" device to launch a ball as far as possible and a "receiver" to catch it? Building a receiver provides an extra twist to a traditional catapult project. Add to the challenge by using a limited set of materials to build your machine and calculate a score based on your throw distance and materials used.
This activity enables students to apply concepts of 'newton's laws of motion' …
This activity enables students to apply concepts of 'newton's laws of motion' that are learned in class to a realworld situation by having them create a car powered by a deflating balloon that travels as far as possible.
This activity is a hands-on investigation that teaches students that air resitance …
This activity is a hands-on investigation that teaches students that air resitance affects how things move and that pressure from compressed air can move things.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.