Updating search results...

Search Resources

47 Results

View
Selected filters:
  • chemical-engineering
In and Out Reactor
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about material balances, a fundamental concept of chemical engineering. They use stoichiometry to predict the mass of carbon dioxide that escapes after reacting measured quantities of sodium bicarbonate with dilute acetic acid. Students then produce the reactions of the chemicals in a small reactor made from a plastic water bottle and balloon.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program, College of Engineering,
James Prager
Megan Schroeder
Stephanie Rivale
Date Added:
09/18/2014
Integrated Chemical Engineering Topics I: Introduction to Biocatalysis, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Prather, Kristala
Date Added:
01/01/2004
Integrated Chemical Engineering Topics I: Process Control by Design, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Chemical engineering problems presented and analyzed in an industrial context. Emphasis on the integration of fundamentals with material property estimation, process control, product development, and computer simulation. Integration of societal issues, such as engineering ethics, environmental and safety considerations, and impact of technology on society are addressed in the context of case studies.

Subject:
Environmental Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Johnston, Barry Scott
Date Added:
01/01/2004
Introduction to Bioengineering (BE.010J), Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Designed as a freshmen seminar course, faculty from various School of Engineering departments describe the research and educational opportunities specific to and offered by their departments. Background lectures by the 20.010J staff introduce students to the fundamental scientific basis for bioengineering. Specially produced videos provide additional background information that is supplemented with readings from newspaper and magazine articles. Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department.

Subject:
Biology
Computer Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Belcher, Angela
Lauffenburger, Douglas
Matsudaira, Paul
Date Added:
01/01/2006
Introduction to Numerical Analysis for Engineering (13.002J), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term. This class was originally listed in Course 13 (Ocean Engineering) as 13.002J.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schmidt, Henrik
Date Added:
01/01/2005
Investigating Contact Angle
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe how water acts differently when placed on hydrophilic and hydrophobic surfaces. They determine which coatings are best to cause surfaces to shed water quickly or reduce the "fogging" caused by condensation.

Subject:
Career and Technical Education
Earth and Space Science
Hydrology
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Jean Stave, Durham Public Schools, NC
Jonathan Boreyko, Mechanical Engineering and Material Science, Pratt School of Engineering
NSF CAREER Award and RET Program, Mechanical Engineering and Material Science,
Professor Chuan-Hua Chen, Mechanical Engineering and Material Science, Pratt School of Engineering
Date Added:
09/18/2014
Let's Get Dirty
Read the Fine Print
Educational Use
Rating
0.0 stars

In a very hands-on activity, students observe and feel the differences between two cleaning methods, with and without hand soap, using coffee grounds to represent "dirt."Most of the dirt and bacteria on our hands is encased in a thin layer of oil, so because of the properties of oil and water, cleaning your hands with water alone has little effect when trying to remove the dirt. This activity demonstrates the importance of using a surfactant, such as hand soap, when washing your hands.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Ryan Cates
STARS GK-12 Program,
Samuel DuPont
Date Added:
09/18/2014
Measuring Surface Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe capillary action in glass tubes of varying sizes. Then they use the capillary action to calculate the surface tension in each tube. They find the average surface tensions and calculate the statistical errors.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Chuan-Hua Chen, Mechanical Engineering and Material Science, Pratt School of Engineering
Jean Stave, Durham Public Schools, NC
NSF CAREER Award and RET Program, Mechanical Engineering and Material Science,
Date Added:
09/18/2014
Principles and Practice of Drug Development, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course serves as a description and critical assessment of the major issues and stages of developing a pharmaceutical or biopharmaceutical. Topics covered include drug discovery, preclinical development, clinical investigation, manufacturing and regulatory issues considered for small and large molecules, and economic and financial considerations of the drug development process. A multidisciplinary perspective is provided by the faculty, who represent clinical, life, and management sciences. Various industry guests also participate.

Subject:
Biology
Career and Technical Education
Health Science
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Charles Cooney, Stan Finkelstein, G.K. Raju, Anthony Sinskey
Date Added:
01/01/2013
Process Dynamics, Operations, and Control, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces dynamic processes and the engineering tasks of process operations and control. Subject covers modeling the static and dynamic behavior of processes; control strategies; design of feedback, feedforward, and other control structures; model-based control; and applications to process equipment.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Johnston, Barry
Date Added:
01/01/2006
Salts & Solubility
Unrestricted Use
CC BY
Rating
0.0 stars

Add different salts to water, then watch them dissolve and achieve a dynamic equilibrium with solid precipitate. Compare the number of ions in solution for highly soluble NaCl to other slightly soluble salts. Relate the charges on ions to the number of ions in the formula of a salt. Calculate Ksp values.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Danielle Harlow
Excellence Center of Science and Mathematics Education at King Saud University
Harlow, Danielle
Kathy Perkins
Koch, Linda
LeMaster, Ron
Linda Koch
Loeblein, Trish
National Science Foundation
O'Donnell Foundation
Perkins, Kathy
PhET
PhET Interactive Simulations
Ron LeMaster
The William and Flora Hewlett Foundation
Trish Loeblein
Wendy Adams
Date Added:
04/01/2006
Separating Mixtures
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to classify materials as mixtures, elements or compounds and identify the properties of each type. The concept of separation of mixtures is also introduced since nearly every element or compound is found naturally in an impure state such as a mixture of two or more substances, and it is common that chemical engineers use separation techniques to separate mixtures into their individual components. For example, the separation of crude oil into purified hydrocarbons such as natural gas, gasoline, diesel, jet fuel and/or lubricants.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Parnia Mohammadi
Roberto Dimaliwat
TeachEngineering.org
Date Added:
09/18/2014
Separation Processes, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

General principles of separation by equilibrium and rate processes. Staged cascades. Applications to distillation, absorption, adsorption, and membrane processes. Phase equilibria and role of diffusion. 10.32 will be offered for 6 units starting spring 2004.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dalzell, William
Date Added:
01/01/2005
Separation Processes for Biochemical Products, Summer 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Cooney, Charles
Date Added:
01/01/2005
Solid, Liquid or Gas?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given a variety of materials and asked to identify each material as a solid, liquid or gas. They use their five senses ‰ŰÓ sight, sound, smell, texture and taste ‰ŰÓ to identify the other characteristics of each item.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Katherine Beggs
Date Added:
09/18/2014
Statistical Thermodynamics of Complex Liquids, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the theory of self-assembly in surfactant-water (micellar) and surfactant-water-oil (micro-emulsion) systems. It also introduces the theory of polymer solutions, as well as scattering techniques, light, x-ray, and neutron scattering applied to studies of the structure and dynamics of complex liquids, and modern theory of the liquid state relevant to structured (supramolecular) liquids.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chen, Sow-Hsin
Date Added:
01/01/2004
Superhydrophobicity: The Lotus Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to superhydrophobic surfaces and the "lotus effect." Water spilled on a superhydrophobic surface does not wet the surface, but simply rolls off. Additionally, as water moves across the superhydrophobic surface, it picks up and carries away any foreign material, such as dust or dirt. Students learn how plants create and use superhydrophobic surfaces in nature and how engineers have created human-made products that mimic the properties of these natural surfaces. They also learn about the tendency of all superhydrophobic surfaces to develop water droplets that do not roll off the surface but become "pinned" under certain conditions, such as water droplets formed from condensation. They see how the introduction of mechanical energy can "unpin" these water droplets and restore the desirable properties of the superhydrophobic surface.

Subject:
Career and Technical Education
Earth and Space Science
Hydrology
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Chuan-Hua Chen, Mechanical Engineering and Material Science, Pratt School of Engineering, Duke University
Jean Stave, Durham Public Schools, NC
NSF CAREER Award and RET Program, Mechanical Engineering and Material Science,
Date Added:
09/18/2014
Surface Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Surface tension accounts for many of the interesting properties we associate with water. By learning about surface tension and adhesive forces, students learn why liquid jets of water break into droplets rather than staying in a continuous stream. Through hands-on activities, students learn how the combination of adhesive forces and cohesive forces cause capillary motion. They study different effects of capillary motion and use capillary motion to measure surface tension. Students explore the phenomena of wetting and hydrophobic and hydrophilic surfaces and see how water's behavior changes when a surface is treated with different coatings. A lotus leaf is a natural example of a superhydrophobic surface, with its water-repellent, self-cleaning characteristics. Students examine the lotus effect on natural leaves and human-made superhydrophobic surfaces, and explore how the lotus leaf repels dewy water through vibration. See the Unit Overview section for details on each lesson in this unit.

Subject:
Career and Technical Education
Earth and Space Science
Hydrology
Technology and Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Chuan-Hua Chen, Mechanical Engineering and Material Science, Pratt School of Engineering, Duke University
Jean Stave, Durham Public Schools, NC
Jonathan Boreyko, Mechanical Engineering and Material Science, Pratt School of Engineering, Duke University
NSF CAREER Award and RET Program, Mechanical Engineering and Material Science,
Date Added:
09/18/2014
Surface Tension Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students extend their understanding of surface tension by exploring the real-world engineering problem of deciding what makes a "good" soap bubble. Student teams first measure this property, and then use this measurement to determine the best soap solution for making bubbles. They experiment with additives to their best soap and water "recipes" to increase the strength or longevity of the bubbles. In a math homework, students perform calculations that explain why soap bubbles form spheres.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Chuan-Hua Chen, Mechanical Engineering and Material Science, Pratt School of Engineering
Jean Stave, Durham Public Schools, NC
NSF CAREER Award and RET Program, Mechanical Engineering and Material Science,
Date Added:
09/18/2014
Surfactants: Helping Molecules Get Along
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basics of molecules and how they interact with each other. They learn about the idea of polar and non-polar molecules and how they act with other fluids and surfaces. Students acquire a conceptual understanding of surfactant molecules and how they work on a molecular level. They also learn of the importance of surfactants, such as soaps, and their use in everyday life. Through associated activities, students explore how surfactant molecules are able to bring together two substances that typically do not mix, such as oil and water. This lesson and its associated activities are easily scalable for grades 3-12.

Subject:
Career and Technical Education
Education
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Ryan Cates
STARS GK-12 Program,
Samuel DuPont
Date Added:
09/18/2014