This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
The given solutions for this task involve the creation and solving of ...
The given solutions for this task involve the creation and solving of a system of two equations and two unknowns, with the caveat that the context of the problem implies that we are interested only in non-negative integer solutions. Indeed, in the first solution, we must also restrict our attention to the case that one of the variables is further even.
This task examines the ways in which the plane can be covered ...
This task examines the ways in which the plane can be covered by regular polygons in a very strict arrangement called a regular tessellation. These tessellations are studied here using algebra, which enters the picture via the formula for the measure of the interior angles of a regular polygon (which should therefore be introduced or reviewed before beginning the task). The goal of the task is to use algebra in order to understand which tessellations of the plane with regular polygons are possible.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This task provides a simple but interesting and realistic context in which ...
This task provides a simple but interesting and realistic context in which students are led to set up a rational equation (and a rational inequality) in one variable, and then solve that equation/inequality for an unknown variable.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one ...
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
Algebra is the language of modern mathematics. This course introduces students to ...
Algebra is the language of modern mathematics. This course introduces students to that language through a study of groups, group actions, vector spaces, linear algebra, and the theory of fields.
This course is a continuation of Abstract Algebra I: the student will ...
This course is a continuation of Abstract Algebra I: the student will revisit structures like groups, rings, and fields as well as mappings like homomorphisms and isomorphisms. The student will also take a look at ring factorization, general lattices, and vector spaces. Later this course presents more advanced topics, such as Galois theory - one of the most important theories in algebra, but one that requires a thorough understanding of much of the content we will study beforehand. Upon successful completion of this course, students will be able to: Compute the sizes of finite groups when certain properties are known about those groups; Identify and manipulate solvable and nilpotent groups; Determine whether a polynomial ring is divisible or not and divide the polynomial (if it is divisible); Determine the basis of a vector space, change bases, and manipulate linear transformations; Define and use the Fundamental Theorem of Invertible Matrices; Use Galois theory to find general solutions of a polynomial over a field. (Mathematics 232)
This problem involves solving a system of algebraic equations from a context: ...
This problem involves solving a system of algebraic equations from a context: depending how the problem is interpreted, there may be one equation or two.
This task is a somewhat more complicated version of "Accurately weighing pennies ...
This task is a somewhat more complicated version of "Accurately weighing pennies I'' as a third equation is needed in order to solve part (a) explicitly. Instead, students have to combine the algebraic techniques with some additional problem-solving (numerical reasoning, informed guess-and-check, etc.)
This lesson is intended to help students begin to transition away from ...
This lesson is intended to help students begin to transition away from a one-to-one correspondence. Students at this point should be able to use concrete ojects to identify values.Goal: Students will be able to use a number line to "Count On from Greater"
This is the main text of Kenny Felder's course in Advanced Algebra ...
This is the main text of Kenny Felder's course in Advanced Algebra II. It consists of a series of worksheets, some intended to be used in class as group activities, and some intended to be used as homework assignments. This text is designed for use with the "Advanced Algebra II: Conceptual Explanations" and the "Advanced Algebra II: Teacher's Guide" collections to make up the entire course.
This is the Teacher's Guide for Kenny Felder's course in Advanced Algebra ...
This is the Teacher's Guide for Kenny Felder's course in Advanced Algebra II. This guide is *not* an answer key for the homework problems: rather, it is a day-by-day guide to help the teacher understand how the author envisions the materials being used. This text is designed for use with the "Advanced Algebra II: Conceptual Explanations" and the "Advanced Algebra II: Homework and Activities" collections (coming soon) to make up the entire course.
" The focus of the course is the concepts and techniques for ...
" The focus of the course is the concepts and techniques for solving the partial differential equations (PDE) that permeate various scientific disciplines. The emphasis is on nonlinear PDE. Applications include problems from fluid dynamics, electrical and mechanical engineering, materials science, quantum mechanics, etc."
This course discusses how to use algebra for a variety of everyday ...
This course discusses how to use algebra for a variety of everyday tasks, such as calculate change without specifying how much money is to be spent on a purchase, analyzing relationships by graphing, and describing real-world situations in business, accounting, and science.
Prepare yourself to take an Algebra course with the Algebra2go䋢 prealgebra resources ...
Prepare yourself to take an Algebra course with the Algebra2go䋢 prealgebra resources page. Whether you are attending Saddleback College's prealgebra class (math 351), taking a prealgebra class at another school, or need to refresh your math skills for a business or science class, Professor Perez and his favorite student Charlie have the tools that can help you. We have five primary types of study materials: class notes, video worksheets, video lectures, practice problems, and practice quizzes. For some topics we have some additional tools to assist you.
This course is for community college students featuring Professor Perez and his ...
This course is for community college students featuring Professor Perez and his student Charlie. This lesson demonstrates subtraction, including when the answer is negative, on the number line.
This is part of the course for community college students featuring Professor ...
This is part of the course for community college students featuring Professor Perez and his student Charlie, teaching how to make conversions between different kinds of units.
This course is oriented toward US high school students. Its structure and ...
This course is oriented toward US high school students. Its structure and materials are aligned to the US Common Core Standards. Foci include: graphing, equations and inequalities.
Students connect polynomial arithmetic to computations with whole numbers and integers. Students ...
Students connect polynomial arithmetic to computations with whole numbers and integers. Students learn that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers. This unit helps students see connections between solutions to polynomial equations, zeros of polynomials, and graphs of polynomial functions. Polynomial equations are solved over the set of complex numbers, leading to a beginning understanding of the fundamental theorem of algebra. Application and modeling problems connect multiple representations and include both real world and purely mathematical situations.
Module 2 builds on students previous work with units and with functions ...
Module 2 builds on students previous work with units and with functions from Algebra I, and with trigonometric ratios and circles from high school Geometry. The heart of the module is the study of precise definitions of sine and cosine (as well as tangent and the co-functions) using transformational geometry from high school Geometry. This precision leads to a discussion of a mathematically natural unit of rotational measure, a radian, and students begin to build fluency with the values of the trigonometric functions in terms of radians. Students graph sinusoidal and other trigonometric functions, and use the graphs to help in modeling and discovering properties of trigonometric functions. The study of the properties culminates in the proof of the Pythagorean identity and other trigonometric identities.
In this module, students synthesize and generalize what they have learned about ...
In this module, students synthesize and generalize what they have learned about a variety of function families. They extend the domain of exponential functions to the entire real line (N-RN.A.1) and then extend their work with these functions to include solving exponential equations with logarithms (F-LE.A.4). They explore (with appropriate tools) the effects of transformations on graphs of exponential and logarithmic functions. They notice that the transformations on a graph of a logarithmic function relate to the logarithmic properties (F-BF.B.3). Students identify appropriate types of functions to model a situation. They adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The description of modeling as, the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions, is at the heart of this module. In particular, through repeated opportunities in working through the modeling cycle (see page 61 of the CCLS), students acquire the insight that the same mathematical or statistical structure can sometimes model seemingly different situations.
Students build a formal understanding of probability, considering complex events such as ...
Students build a formal understanding of probability, considering complex events such as unions, intersections, and complements as well as the concept of independence and conditional probability. The idea of using a smooth curve to model a data distribution is introduced along with using tables and techonolgy to find areas under a normal curve. Students make inferences and justify conclusions from sample surveys, experiments, and observational studies. Data is used from random samples to estimate a population mean or proportion. Students calculate margin of error and interpret it in context. Given data from a statistical experiment, students use simulation to create a randomization distribution and use it to determine if there is a significant difference between two treatments.
This undergraduate level course follows Algebra I. Topics include group representations, rings, ...
This undergraduate level course follows Algebra I. Topics include group representations, rings, ideals, fields, polynomial rings, modules, factorization, integers in quadratic number fields, field extensions, and Galois theory.
In earlier grades, students define, evaluate, and compare functions and use them ...
In earlier grades, students define, evaluate, and compare functions and use them to model relationships between quantities. In this module, students extend their study of functions to include function notation and the concepts of domain and range. They explore many examples of functions and their graphs, focusing on the contrast between linear and exponential functions. They interpret functions given graphically, numerically, symbolically, and verbally; translate between representations; and understand the limitations of various representations.
In earlier modules, students analyze the process of solving equations and developing ...
In earlier modules, students analyze the process of solving equations and developing fluency in writing, interpreting, and translating between various forms of linear equations (Module 1) and linear and exponential functions (Module 3). These experiences combined with modeling with data (Module 2), set the stage for Module 4. Here students continue to interpret expressions, create equations, rewrite equations and functions in different but equivalent forms, and graph and interpret functions, but this time using polynomial functions, and more specifically quadratic functions, as well as square root and cube root functions.
This lesson is about trying to get students to make connections between ...
This lesson is about trying to get students to make connections between ideas about equations, inequalities, and expressions. The lesson is designed to give students opportunities to use mathematical vocabulary for a purpose to describe, discuss, and work with these symbol strings.The idea is for students to start gathering global information by looking at the whole number string rather than thinking only about individual procedures or steps. Hopefully students will begin to see the symbol strings as mathematical objects with their own unique set of attributes. (7th Grade Math)
" This course provides an introduction to the language of schemes, properties ...
" This course provides an introduction to the language of schemes, properties of morphisms, and sheaf cohomology. Together with 18.725 Algebraic Geometry, students gain an understanding of the basic notions and techniques of modern algebraic geometry."
This research-oriented course will focus on algebraic and computational techniques for optimization ...
This research-oriented course will focus on algebraic and computational techniques for optimization problems involving polynomial equations and inequalities with particular emphasis on the connections with semidefinite optimization. The course will develop in a parallel fashion several algebraic and numerical approaches to polynomial systems, with a view towards methods that simultaneously incorporate both elements. We will study both the complex and real cases, developing techniques of general applicability, and stressing convexity-based ideas, complexity results, and efficient implementations. Although we will use examples from several engineering areas, particular emphasis will be given to those arising from systems and control applications.
This unit consists of four lessons in which students explore several meanings ...
This unit consists of four lessons in which students explore several meanings and representations of multiplication, including number lines, sets, arrays, and balance beams. They also learn about the commutative property of multiplication, the results of multiplying by 1 and by 0, and the inverse property of multiplication. Students write story problems and create pictographs. The unit includes activity sheets, assessment ideas, links to related applets, reflective questions for students and teachers, extensions and a bibliography of children's literature with a multiplication focus.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.