Updating search results...

Search Resources

2352 Results

View
Selected filters:
  • Physical Science
Balloon Cars Revisited: Alternative Fuel Gases
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an extension of the common balloon cars, where students explore if and how different gases used as a fuel source effect the distances traveled by the cars.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
02/10/2023
Balloon Racer Project
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity enables students to apply concepts of 'newton's laws of motion' that are learned in class to a realworld situation by having them create a car powered by a deflating balloon that travels as far as possible.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Mike Falck
Date Added:
02/10/2023
Balloon Rockets
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a hands-on investigation that teaches students that air resitance affects how things move and that pressure from compressed air can move things.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Anne Flavahan
Emma Holmblad
Date Added:
02/10/2023
Balloon Rockets in 1D
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this structured inquiry activity students will work in groups/ teams to build a balloon rocket of their own design. The rocket will race in one dimension and require that they apply their knowledge of position, time, and velocity.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Mary Hoelscher
Date Added:
02/10/2023
Balloons
Read the Fine Print
Educational Use
Rating
0.0 stars

Students follow the steps of the engineering design process as they design and construct balloons for aerial surveillance. After their first attempts to create balloons, they are given the associated Estimating Buoyancy lesson to learn about volume, buoyancy and density to help them iterate more successful balloon designs.Applying their newfound knowledge, the young engineers build and test balloons that fly carrying small flip cameras that capture aerial images of their school. Students use the aerial footage to draw maps and estimate areas.

Subject:
Career and Technical Education
Mathematics
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Integrated Teaching and Learning Program,
Marissa H. Forbes
Mike Soltys
TeachEngineering.org
Date Added:
09/18/2014
Balloons & Buoyancy
Unrestricted Use
CC BY
Rating
0.0 stars

Experiment with a helium balloon, a hot air balloon, or a rigid sphere filled with different gases. Discover what makes some balloons float and others sink.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
PhET Interactive Simulations
Ron LeMaster
Date Added:
11/15/2007
Balloons & Buoyancy (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Experiment with a helium balloon, a hot air balloon, or a rigid sphere filled with different gases. Discover what makes some balloons float and others sink.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Harlow, Danielle
LeMaster, Ron
Perkins, Kathy
Wieman, Carl
Date Added:
07/02/2009
Balloons and Static Electricity
Unrestricted Use
CC BY
Rating
0.0 stars

Students explore static electricity by rubbing a simulated balloon on a sweater. As they view the charges in the sweater, balloon, and adjacent wall, they gain an understanding of charge transfer. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
PhET Interactive Simulations
Sam Reid
Wendy Adams
Date Added:
10/06/2006
Balloons and Static Electricity (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Reid, Sam
Date Added:
07/02/2008
Band Structure
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the origin of energy bands in crystals of atoms. The structure of these bands determines how materials conduct electricity.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Malley, Chris
McKagan, Sam
Perkins, Kathy
PhET Interactive Simulations
Sam McKagan
Wieman, Carl
Date Added:
10/04/2006
Band Structure (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the origin of energy bands in crystals of atoms. The structure of these bands determines how materials conduct electricity.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Malley, Chris
McKagan, Sam
Perkins, Kathy
Wieman, Carl
Date Added:
07/02/2010
Basic Coordinates and Seasons Lab
Unrestricted Use
CC BY
Rating
0.0 stars

This interactive activity, in applet form, guides students through the motion of the sun and how they relate to seasons.

Subject:
Physical Science
Material Type:
Activity/Lab
Interactive
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
David Hudgins
Edward Prather
Kevin Lee
University of Nebraska-Lincoln astronomy education group
Date Added:
02/07/2023
Basically Acidic Ink
Read the Fine Print
Educational Use
Rating
0.0 stars

Students hypothesize whether vinegar and ammonia-based glass cleaner are acids or bases. They create designs on index cards using these substances as invisible inks. After the index cards have dried, they apply red cabbage juice as an indicator to reveal the designs.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Corey Burton
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Nicole Stewart
Rachel Howser
TeachEngineering.org
Date Added:
09/18/2014
Basically Acids
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of acid/base chemistry in a fun, interactive way by studying instances of acid/base chemistry found in popular films such as Harry Potter and the Prisoner of Azkaban and National Treasure. Students learn what acids, bases and indicators are and how they can be used, including invisible ink. They also learn how engineers use acids and bases every day to better our quality of life. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
TeachEngineering.org
University of Houston,
Date Added:
09/18/2014
Basics of Fluid Mechanics
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Fluid mechanics deals with the study of all fluids under static and dynamic situations. Fluid mechanics is a branch of continuous mechanics which deals with a relationship between forces, motions, and statical conditions in a continuous material. This study area deals with many and diversified problems such as surface tension, fluid statics, flow in enclose bodies, or flow round bodies (solid or otherwise), flow stability, etc. In fact, almost any action a person is doing involves some kind of a fluid mechanics problem. Furthermore, the boundary between the solid mechanics and fluid mechanics is some kind of gray shed and not a sharp distinction (see Figure 1.1 for the complex relationships between the different branches which only part of it should be drawn in the same time.). For example, glass appears as a solid material, but a closer look reveals that the glass is a liquid with a large viscosity. A proof of the glass ``liquidity'' is the change of the glass thickness in high windows in European Churches after hundred years. The bottom part of the glass is thicker than the top part. Materials like sand (some call it quick sand) and grains should be treated as liquids. It is known that these materials have the ability to drown people. Even material such as aluminum just below the mushy zone also behaves as a liquid similarly to butter. Furthermore, material particles that "behaves'' as solid mixed with liquid creates a mixture After it was established that the boundaries of fluid mechanics aren't sharp, most of the discussion in this book is limited to simple and (mostly) Newtonian (sometimes power fluids) fluids which will be defined later.

This book describes the fundamentals fluid mechanics phenomena for engineers and others. It is designed to replace all introductory textbook(s) or instructor's notes for the fluid mechanics in undergraduate classes for engineering/science students but also for technical peoples. It is hoped that the book could be used as a reference book for people who have at least some basics knowledge of science areas such as calculus, physics, etc.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Textbook
Provider:
Potto Project
Author:
Genick Bar–MeirPh. D.
Date Added:
01/01/2011
The Basics of General, Organic, and Biological Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a free textbook offered by Saylor Foundation. The Basics of General, Organic, and Biological Chemistry by David W. Ball, John W. Hill, and Rhonda J. Scott is a new textbook offering for the one-semester GOB Chemistry course. The authors designed this book from the ground up to meet the needs of a one-semester course. It is 20 chapters in length and approximately 350-400 pages; just the right breadth and depth for instructors to teach and students to grasp. In addition, The Basics of General, Organic, and Biological Chemistry is written not by one chemist, but THREE chemistry professors with specific, complimentary research and teaching areas. David W. Ball’s specialty is physical chemistry, John W. Hill’s is organic chemistry, and finally, Rhonda J. Scott’s background is in enzyme and peptide chemistry. These three authors have the expertise to identify and present only the most important material for students to learn in the GOB Chemistry course.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
The Saylor Foundation
Author:
David W. Ball
John W. Hill and Rhonda J. Scott
Date Added:
01/01/2011
Battery-Resistor Circuit
Unrestricted Use
CC BY
Rating
0.0 stars

Look inside a resistor to see how it works. Increase the battery voltage to make more electrons flow though the resistor. Increase the resistance to block the flow of electrons. Watch the current and resistor temperature change.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
PhET Interactive Simulations
Reid, Sam
Sam Reid
Wieman, Carl
Date Added:
11/20/2008
Battery Voltage
Unrestricted Use
CC BY
Rating
0.0 stars

Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
PhET Interactive Simulations
Reid, Sam
Sam Reid
Wieman, Carl
Date Added:
11/16/2007
Battery Voltage (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Reid, Sam
Wieman, Carl
Date Added:
07/02/2008