MIT Environment & Sustainability: Earth Systems and Climate Science
Like so many of the big challenges taken on at MIT, environmental and sustainability issues demand an interdisciplinary perspective.
From declining fisheries to acute urban pollution to record-breaking global temperatures, the evidence of human impact on the environment continues to mount. And at the same time, the environment shapes us, as human society and institutions are built upon our connection to the weather, land, water, and other species. What can we learn from ecological systems and cycles? What solutions will allow people and the planet to thrive?
MIT scholars, students and alumni are working to understand and help us make progress toward a more sustainable and just world. This core mission draws upon all of the fields represented at MIT: not just science, engineering, and technology, but also the humanities, arts, economics, history, architecture, urban planning, management, policy, and more.
This OCW course collection is inspired by two interdisciplinary MIT programs. Many of the undergraduate courses fall within the undergraduate Environment and Sustainability Minor managed by MIT’s Environmental Solutions Initiative (ESI); the OCW course list employs the undergraduate minor’s four topic pillars. Many of the graduate-level courses are part of the MIT Sloan School of Management Sustainability Certificate curriculum.
Theoretical topics of fluid dynamics relevant to natural phenomena or man-made hazards …
Theoretical topics of fluid dynamics relevant to natural phenomena or man-made hazards in water and atmosphere. Basic law of fluid motion. Scaling and approximations. Slow flows, with applications to drag on a particle and mud flow on a slope. Boundary layers: jets and plumes in pure fluids or in porous media. Thermal and buoyancy effects, selective withdrawal and internal waves. Transient boundary layers in impulsive flows or waves. Induced streaming and mass transport. Dispersion in steady flows or in waves. Effects of earth rotation on coastal flows. Wind induced flow in shallow seas. Stratified seas and coastal upwelling.
This undergraduate class is designed to introduce students to the physics that …
This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.
This course provides a detailed overview of the chemical transformations that control …
This course provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth’s atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers.
Survey of atmospheric and oceanic phenomena including the discussion of observations and …
Survey of atmospheric and oceanic phenomena including the discussion of observations and theoretical interpretations. Topics covered include: monsoons; El Nino; planetary waves; atmospheric synoptic eddies and fronts; gulf stream rings; hurricanes; surface and internal gravity waves; and tides. In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.
This course addresses the challenges of defining a relationship between exposure to …
This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.
This course introduces students to climate studies, including beginnings of the solar …
This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history. It is offered to both undergraduate and graduate students with different requirements.
The goal of this site is to summarize the most important lines …
The goal of this site is to summarize the most important lines of evidence for human-caused climate change. It confronts the stickier questions about uncertainty in our projections, engages in a discussion of risk and risk management, and concludes by presenting different options for taking action. This site sticks to the facts and does not get into politics. We hope that the facts prepare you for more effective conversations with your community about values, trade-offs, politics, and actions.
D-Lab: Water, Climate Change, and Health is a project-based, experiential, and transdisciplinary …
D-Lab: Water, Climate Change, and Health is a project-based, experiential, and transdisciplinary course. Together with peers and experts, we will explore the vitally important interface of water, climate change, and health. This course addresses mitigation and adaptation to climate change as it pertains to water and health. Water-borne illness, malnutrition, and vector-borne diseases represent the top three causes of morbidity and mortality in regions of our focus. Students submit a term project, setting the stage for a lifelong commitment to communicating climate science to a broad public.
This course provides a review of physical, chemical, ecological, and economic principles …
This course provides a review of physical, chemical, ecological, and economic principles used to examine interactions between humans and the natural environment. Mass balance concepts are applied to ecology, chemical kinetics, hydrology, and transportation; energy balance concepts are applied to building design, ecology, and climate change; and economic and life cycle concepts are applied to resource evaluation and engineering design. Numerical models are used to integrate concepts and to assess environmental impacts of human activities. Problem sets involve development of MATLABĺ¨ models for particular engineering applications. Some experience with computer programming is helpful but not essential.
We will cover fundamentals of ecology, considering Earth as an integrated dynamic …
We will cover fundamentals of ecology, considering Earth as an integrated dynamic system. Topics include coevolution of the biosphere, geosphere, atmosphere and oceans; photosynthesis and respiration; the hydrologic, carbon and nitrogen cycles. We will examine the flow of energy and materials through ecosystems; regulation of the distribution and abundance of organisms; structure and function of ecosystems, including evolution and natural selection; metabolic diversity; productivity; trophic dynamics; models of population growth, competition, mutualism and predation. This course is designated as Communication-Intensive; instruction and practice in oral and written communication provided. Biology is a recommended prerequisite.
A great variety of processes affect the surface of the Earth. Topics …
A great variety of processes affect the surface of the Earth. Topics to be covered are production and movement of surficial materials; soils and soil erosion; precipitation; streams and lakes; groundwater flow; glaciers and their deposits. The course combines aspects of geology, climatology, hydrology, and soil science to present a coherent introduction to the surface of the Earth, with emphasis on both fundamental concepts and practical applications, as a basis for understanding and intelligent management of the Earth's physical and chemical environment.
This course provides an introduction to the atmospheric chemistry involved in climate …
This course provides an introduction to the atmospheric chemistry involved in climate change, air pollution and biogeochemical cycles using a combination of hands-on laboratory, field studies, and simple computer models. Lectures will be accompanied by field trips to collect air samples for the analysis of gases, aerosols and clouds by the students.
This course introduces the parallel evolution of life and the environment. Life …
This course introduces the parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course explores the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared.
This course provides students with a scientific foundation of anthropogenic climate change …
This course provides students with a scientific foundation of anthropogenic climate change and an introduction to climate models. It focuses on fundamental physical processes that shape climate (e.g. solar variability, orbital mechanics, greenhouse gases, atmospheric and oceanic circulation, and volcanic and soil aerosols) and on evidence for past and present climate change. During the course they discuss material consequences of climate change, including sea level change, variations in precipitation, vegetation, storminess, and the incidence of disease. This course also examines the science behind mitigation and adaptation proposals.
Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in …
Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics include: Darcy equation, flow nets, mass conservation, the aquifer flow equation, heterogeneity and anisotropy, storage properties, regional circulation, unsaturated flow, recharge, stream-aquifer interaction, well hydraulics, flow through fractured rock, numerical models, groundwater quality, contaminant transport processes, dispersion, decay, and adsorption. Includes laboratory and computer demonstrations.
This undergraduate level course presents a basic study in geology. It introduces …
This undergraduate level course presents a basic study in geology. It introduces major minerals and rock types, rock-forming processes, and time scales; temperatures, pressures, compositions, structure of the Earth, and measurement techniques; geologic structures and relationships observable in the field; sediment movement and landform development by moving water, wind, and ice; crustal processes and planetary evolution in terms of global plate tectonics with an emphasis on ductile and brittle processes.
This reading seminar examines land, water, food, and climate in a changing …
This reading seminar examines land, water, food, and climate in a changing world, with an emphasis on key scientific questions about the connections between natural resources and food production. Students read and discuss papers on a range of topics, including water and land resources, climate change, demography, agroecology, biotechnology, trade, and food security. The readings are supplemented by short lectures that provide context and summarize main points. The seminar provides a broad perspective on one of the defining global issues of this century. Students consider scientific controversies as well as areas of general agreement and examine practical solutions for addressing critical problems.
This course provides an introduction to the study of environmental phenomena that …
This course provides an introduction to the study of environmental phenomena that exhibit both organized structure and wide variability - i.e., complexity. Through focused study of a variety of physical, biological, and chemical problems in conjunction with theoretical models, we learn a series of lessons with wide applicability to understanding the structure and organization of the natural world. Students will also learn how to construct minimal mathematical, physical, and computational models that provide informative answers to precise questions.
This class examines tools, data, and ideas related to past climate changes …
This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).
This course introduces the structure, composition, and physical processes governing the terrestrial …
This course introduces the structure, composition, and physical processes governing the terrestrial planets, including their formation and basic orbital properties. Topics include plate tectonics, earthquakes, seismic waves, rheology, impact cratering, gravity and magnetic fields, heat flux, thermal structure, mantle convection, deep interiors, planetary magnetism, and core dynamics. Suitable for majors and non-majors seeking general background in geophysics and planetary structure.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.