Updating search results...

Search Resources

5 Results

View
Selected filters:
  • membrane
Cell Membrane Structure and Function
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the different structures that comprise cell membranes, fulfilling part of the Research and Revise stages of the legacy cycle. They view online animations of cell membrane dynamics (links provided). Then they observe three teacher demonstrations that illustrate diffusion and osmosis concepts, as well as the effect of movement through a semi-permeable membrane using Lugol's solution.

Subject:
Biology
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Amber Spolarich
Melinda M. Higgins
VU Bioengineering RET Program,
Date Added:
09/18/2014
Diffusion across semipermeable membranes
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

Biological membranes are selectively permeable; some molecules can cross while others cannot. One way to affect this is through pore size. Change the pore size with the slider to change the permeability of the membrane to the different types of molecules. Trace an individual molecule to see the path it takes.

Subject:
Anatomy/Physiology
Biology
Life Science
Material Type:
Game
Interactive
Simulation
Date Added:
11/08/2018
Fields, Forces and Flows in Biological Systems, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Han, Jongyoon (Jay)
Date Added:
01/01/2007
Hydrogen-Oxygen Reaction Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab exercise exposes students to a potentially new alternative energy source hydrogen gas. Student teams are given a hydrogen generator and an oxygen generator. They balance the chemical equation for the combustion of hydrogen gas in the presence of oxygen. Then they analyze what the equation really means. Two hypotheses are given, based on what one might predict upon analyzing the chemical equation. Once students have thought about the process, they are walked through the experiment and shown how to collect the gas in different ratios. By trial and error, students determine the ideal combustion ratio. For both volume of explosion and kick generated by explosion, they qualitatively record results on a 0-4 scale. Then, students evaluate their collected results to see if the hypotheses were correct and how their results match the theoretical equation. Students learn that while hydrogen will most commonly be used for fuel cells (no combustion situation), it has been used in rocket engines (for which a tremendous combustion occurs).

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
CREAM GK-12 Program, Engineering Education Research Center, College of Engineering and Architecture,
Courtney Herring (WSU Gene and Linda Voiland School of Chemical Engineering and Bioengineering)
Stephen Dent (WSU College of Engineering)
Date Added:
09/18/2014
Keepers of the Gate
Read the Fine Print
Educational Use
Rating
0.0 stars

Through two lessons and five activities, students explore the structure and function of cell membranes. Specific transport functions, including active and passive transport, are presented. In the legacy cycle tradition, students are motivated with a Grand Challenge question. As they study the ingress and egress of particles through membranes, students learn about quantum dots and biotechnology through the concept of intracellular engineering.

Subject:
Biology
Career and Technical Education
Chemistry
Life Science
Physical Science
Technology and Engineering
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Melinda M. Higgins
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014