Updating search results...

Search Resources

15 Results

View
Selected filters:
  • charge
Balloons and Static Electricity
Unrestricted Use
CC BY
Rating
0.0 stars

Students explore static electricity by rubbing a simulated balloon on a sweater. As they view the charges in the sweater, balloon, and adjacent wall, they gain an understanding of charge transfer. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
PhET Interactive Simulations
Sam Reid
Wendy Adams
Date Added:
10/06/2006
Battery Voltage
Unrestricted Use
CC BY
Rating
0.0 stars

Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
PhET Interactive Simulations
Reid, Sam
Sam Reid
Wieman, Carl
Date Added:
11/16/2007
Build An Atom
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This activity utilizes an online interactive simulation (PhET.colorado.edu) that allows students to explore and manipulate the subatomic particles that comprise the atom. Students also explore atomic mass, ions, nuclear symbols, and the periodic table. A link to the simulation and a downloadable file that includes a pre-lab, a student activity guide, and a post-lab assessment. The simulation also includes other inquiry opportunities and a game.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Simulation
Date Added:
11/08/2018
Charges and Fields
Unrestricted Use
CC BY
Rating
0.0 stars

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Dubson, Michael
Michael Dubson
PhET Interactive Simulations
Date Added:
11/20/2008
Conductivity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students make a simple conductivity tester using a battery and light bulb. They learn the difference between conductors and insulators of electrical energy as they test a variety of materials for their ability to conduct electricity.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise Carlson
Integrated Teaching and Learning Program,
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
10/14/2015
Electric Field of Dreams
Unrestricted Use
CC BY
Rating
0.0 stars

Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude. (Kevin Costner not included).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
PhET Interactive Simulations
Reid, Sam
Sam Reid
Wieman, Carl
Date Added:
11/16/2007
Get Charged!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the idea of electrical energy. They learn about the relationships between charge, voltage, current and resistance. They discover that electrical energy is the form of energy that powers most of their household appliances and toys. In the associated activities, students learn how a circuit works and test materials to see if they conduct electricity. Building upon a general understanding of electrical energy, they design their own potato power experiment. In two literacy activities, students learn about the electrical power grid and blackouts.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Is It Shocking?
Read the Fine Print
Educational Use
Rating
0.0 stars

To better understand electricity, students investigate the properties of materials based on their ability to dispel static electricity. They complete a lab worksheet, collect experimental data, and draw conclusions based on their observations and understanding of electricity. The activity provides hands-on learning experience to safely explore the concept of static electricity, learning what static electricity is and which materials best hold static charge. Students learn to identify materials that hold static charge as insulators and materials that dispel charge as conductors. The class applies the results from their material tests to real-world engineering by identifying the best of the given materials for moving current in a solar panel.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Lauren Jabusch, Cristian Heredia, Andrew Palermo
RESOURCE GK-12 Program, College of Engineering, University of California Davis,
Date Added:
10/14/2015
Lights Out!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces the concept of electricity by asking students to imagine what their life would be like without electricity. Two main forms of electricity, static and current, are introduced. Students learn that electrons can move between atoms, leaving atoms in a charged state.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Daria Kotys-Schwartz
Denise Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Date Added:
09/18/2014
Potato Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use potatoes to light an LED clock (or light bulb) as they learn how a battery works in a simple circuit and how chemical energy changes to electrical energy. As they learn more about electrical energy, they better understand the concepts of voltage, current and resistance.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Janet Yowell
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
10/14/2015
What Causes Lightning?
Rating
0.0 stars

This is a lesson that students will learn about static electricity and electric fields by building a device that can detect electrical charges, electroscope. Students will then investigate how well different materials can build up electric charges by rubbing them against wool.

Subject:
Physical Science
Physics
Material Type:
Lesson Plan
Author:
Svenja Lohner
Date Added:
03/22/2024
What Is Electricity?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of electricity by identifying it as an unseen, but pervasive and important presence in their lives. They are also introduced to the idea of engineers making, controlling and distributing electricity. The main concepts presented are the science of electricity and the careers that involve an understanding of electricity. Students first review the structure of atoms and then learn that electrons are the particles behind electrical current and the motivation for electron movement. They compare conductors and insulators based on their capabilities for electron flow. Then water and electrical systems are compared as an analogy to electrical current. They learn the differences between static and dynamic forms of electricity. A PowerPoint(TM) presentation is included, with review question/answer slides, as well as assessment handouts to practice using electricity-related terms through storytelling and to research electricity-related and electrical engineering careers.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Lauren Jabusch, Cristian Heredia, Andrew Palermo
RESOURCE GK-12 Program, College of Engineering, University of California Davis,
Date Added:
10/14/2015
What's the Conductivity of Gatorade?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use conductivity meters to measure various salt and water solutions, as indicated by the number of LEDs (light emitting diodes) that illuminate on the meter. Students create calibration curves using known amounts of table salt dissolved in water and their corresponding conductivity readings. Using their calibration curves, students estimate the total equivalent amount of salt contained in Gatorade (or other sports drinks and/or unknown salt solutions). This activity reinforces electrical engineering concepts, such as the relationship between electrical potential, current and resistance, as well as the typical circuitry components that represent these phenomena. The concept of conductors is extended to ions that are dissolved in solution to illustrate why electrolytic solutions support the passage of currents.

Subject:
Career and Technical Education
Chemistry
Physical Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
AMPS GK-12 Program,
Jill Fonda
Keeshan Williams
Vikram Kapila
Date Added:
09/18/2014
Yogurt Cup Speakers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the role of electricity and magnetism as they build speakers. They also explore the properties of magnets, create electromagnets, and determine the directions of magnetic fields. They conduct a scientific experiment and show cause-effect relationships by monitoring changes in the speaker's movement as the amount or the direction of the current change.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
GK-12 Program, Center for Engineering and Computing Education, College of Engineering and Information Technology,
Jed Lyons, Ivanka Todorova, Trevor Roebuck
Date Added:
09/18/2014