1.050 is a sophomore-level engineering mechanics course, commonly labeled "Statics and Strength …
1.050 is a sophomore-level engineering mechanics course, commonly labeled "Statics and Strength of Materials" or "Solid Mechanics I." This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.
In this engineering challenge, you will use limited materials to build a …
In this engineering challenge, you will use limited materials to build a paper tower as tall as possible, but there's a twist! Your tower must also support a heavy weight at the top without collapsing.
Students are introduced to the engineering design process, focusing on the concept …
Students are introduced to the engineering design process, focusing on the concept of brainstorming design alternatives. They learn that engineering is about designing creative ways to improve existing artifacts, technologies or processes, or developing new inventions that benefit society. Students come to realize that they can be engineers and use the design process themselves to create tomorrow's innovations.
Students are introduced to various types of energy with a focus on …
Students are introduced to various types of energy with a focus on thermal energy and types of heat transfer as they are challenged to design a better travel thermos that is cost efficient, aesthetically pleasing and meets the design objective of keeping liquids hot. They base their design decisions on material properties such thermal conductivity, cost and function. These engineering and science concepts are paired with student experiences to build an understanding of heat transfer as it plays a role in their day-to-day lives. While this introduction only shows the top-level concepts surrounding the mathematics associated with heat transfer; the skills become immediately useful as students apply what they know to solve an engineering challenge.
Student teams use the engineering design process to create a useful product …
Student teams use the engineering design process to create a useful product of their choice out of recyclable items and "trash." The class is given a "landfill" of reusable items, such as aluminum cans, cardboard, paper, juice boxes, chip bags, egg cartons, milk cartons, etc., and each group is allowed a limited amount of bonding materials, such as duct tape, hot glue and string. This activity addresses the importance of reuse and encourages students to look at ways they can reuse items they would otherwise throw away.
In this video segment adapted from ZOOM, the cast tries to design …
In this video segment adapted from ZOOM, the cast tries to design and build a bridge made out of drinking straws that will support the weight of 200 pennies.
Students learn the history of the waterwheel and common uses for water …
Students learn the history of the waterwheel and common uses for water turbines today. They explore kinetic energy by creating their own experimental waterwheel from a two-liter plastic bottle. They investigate the transformations of energy involved in turning the blades of a hydro-turbine into work, and experiment with how weight affects the rotational rate of the waterwheel. Students also discuss and explore the characteristics of hydroelectric plants.
This video segment, adapted fromThinking Big, Building Small, demonstrates each part of …
This video segment, adapted fromThinking Big, Building Small, demonstrates each part of the engineering design process, which is fundamental to any successful project. Though it does this in the context of building skyscrapers, the process is applicable to any sort of project, including constructing schools, building bridges, and even manufacturing sneakers. Students will recognize the value of going through its steps sequentially when constructing scale models. Recommended for: Grades 3-12
The teacher-designed project described on this Google Site can be used to …
The teacher-designed project described on this Google Site can be used to introduce students to the engineering design process while they learn about energy. The lesson begins with inviting students to play the role of engineers that are asked to design and build a model wind turbine for a specified location in California. All project documents are editable and could be modified for local interests for the students. The project resources include ideas for scaffolding each phase of the design process to support all learners and assessment resources.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.