Updating search results...

Search Resources

8 Results

View
Selected filters:
  • WI.Math.Content.HSG-CO.D.13 - Construct an equilateral triangle, a square, and a regular hexagon ins...
  • WI.Math.Content.HSG-CO.D.13 - Construct an equilateral triangle, a square, and a regular hexagon ins...
G-CO Inscribing an equilateral triangle in a circle
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Suppose we are given a circle of radius $r$. The goal of this task is to construct an equilateral triangle whose three vertices lie on the circle. Supp...

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
10/30/2013
G-CO Origami equilateral triangle
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Jessica is working to construct an equilateral triangle with origami paper and uses the following steps. First she folds the paper in half and then unf...

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
10/14/2013
Geometry Module 1: Congruence, Proof, and Constructions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Module 1 embodies critical changes in Geometry as outlined by the Common Core. The heart of the module is the study of transformations and the role transformations play in defining congruence. The topic of transformations is introduced in a primarily experiential manner in Grade 8 and is formalized in Grade 10 with the use of precise language. The need for clear use of language is emphasized through vocabulary, the process of writing steps to perform constructions, and ultimately as part of the proof-writing process.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Mathematics
Material Type:
Module
Provider:
New York State Education Department
Provider Set:
EngageNY
Date Added:
05/14/2013
Inscribing a Hexagon in a Circle
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This task is primarily for instructive purposes but can be used for assessment as well. Parts (a) and (b) are good applications of geometric constructions using a compass and could be used for assessment purposes but the process is a bit long since there are six triangles which need to be constructed.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/21/2012
Inscribing a Square in a Circle
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This task provides an opportunity for students to apply triangle congruence theorems in an explicit, interesting context.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/17/2012
Módulo de geometría 1: congruencia, prueba y construcciones
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

El módulo 1 incorpora cambios críticos en la geometría según lo descrito por el núcleo común. El corazón del módulo es el estudio de las transformaciones y el papel que juegan las transformaciones para definir la congruencia. El tema de las transformaciones se introduce de manera principalmente experiencial en el grado 8 y se formaliza en el grado 10 con el uso de un lenguaje preciso. La necesidad de un uso claro del lenguaje se enfatiza a través del vocabulario, el proceso de escribir pasos para realizar construcciones y, en última instancia, como parte del proceso de escritura de prueba.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description:
Module 1 embodies critical changes in Geometry as outlined by the Common Core. The heart of the module is the study of transformations and the role transformations play in defining congruence. The topic of transformations is introduced in a primarily experiential manner in Grade 8 and is formalized in Grade 10 with the use of precise language. The need for clear use of language is emphasized through vocabulary, the process of writing steps to perform constructions, and ultimately as part of the proof-writing process.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Mathematics
Material Type:
Module
Provider:
New York State Education Department
Provider Set:
EngageNY
Date Added:
05/14/2013
Placing a Fire Hydrant
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This task can be implemented in a variety of ways. For a class with previous exposure to properties of perpendicular bisectors, part (a) could be a quick exercise in geometric constructions, and an application of the result. Alternatively, this could be part of an introduction to perpendicular bisectors, culminating in a full proof that the three perpendicular bisectors are concurrent at the circumcenter of the triangle, an essentially complete proof of which is found in the solution below.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012